PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A fully coupled thermo-mechanical numerical modelling of the refill friction stir spot welding process in Alclad 7075-T6 aluminium alloy sheets

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Refill friction stir spot welding (RFSSW) is a solid state joining technology that has the potential to replace processes such as the open-air fusion bonding technique and rivet technology in aerospace applications. Selection of proper RFSSW parameters is a crucial task which is important to ensure the mechanical strength of the joint. The aim of this paper is to undertake numerical modelling of the RFSSW process to understand the physics of the welding process, which involves large deformations, complex contact conditions and steep temperature gradients. Three-dimensional fully coupled thermo-mechanical models of RFSSW joints between Alclad 7075-T6 aluminium alloy sheets have been built in the finite-element-based program Simufact Forming. The simulation results included the temperature distribution and the stress and strain distributions in the overlap joint. The results of numerical computations have been compared with experimental ones. The numerical model was able to predict the mechanics of material flow during the joining of sheets of Alclad aluminium alloys using RFSSW. The predictions of the temperature gradient in the weld zone were in good agreement with the temperature measured experimentally. The numerical models that have been built are capable of simulating RFSSW to reduce the number of experiments required to set optimal welding parameters.
Rocznik
Strony
281--294
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
  • Department of Manufacturing and Production Engineering, Rzeszow University of Technology, Al. Powst. Warszawy 8, 35‑959 Rzeszow, Poland
  • Department of Materials Forming and Processing, Rzeszow University of Technology, Al. Powst. Warszawy 8, 35‑959 Rzeszow, Poland
Bibliografia
  • [1] Schilling C, Dos Santos J. Method and device for joining at least two adjoining work pieces by friction welding, U.S. Patent 0179682, 2002.
  • [2] Yang HG, Yang HJ, Hu X. Simulation on the plunge stage in refill friction stir spot welding of aluminum alloys. Proceedings of the 4th International Conference on Mechatronics Materials Chemistry and Computer Engineering, Xi’an, China, 12–13 December 2015, pp. 521–524.
  • [3] Muci-Küchler KH, Kalagara S, Arbegast WJ. Simulation of a refill friction stir spot welding process using a fully coupled thermomechanical FEM model. J Manuf Sci Eng. 2010;132(1):014503.
  • [4] Cao JY, Wang M, Kong L, Yin YH, Guo LJ. Numerical modeling and experimental investigation of material flow in friction pot welding of Al 6061–T6. Int J Adv Manuf Technol. 2017;89:2129–39.
  • [5] D’Urso G, Giardini C. Thermo-mechanical characterization of friction stir spot welded AA7050 sheets by means of experimental and FEM analyses. Materials. 2016;9(8):689.
  • [6] D’Urso G, Longo M, Giardini C. Friction stir spot welding (FSSW) of aluminum sheets: experimental and simulative analysis. Key Eng Mater. 2013;549:477–83.
  • [7] Malik V, Sanjeev NK, Hebbar HS, Kailas SV. Finite element simulation of exit hole filling for friction stir spot welding-a modified technique to apply practically. Proced Eng. 2014;97:1265–73.
  • [8] Yang X, Feng W, Li W, Xu Y, Chu Q, Ma T, Wang W. Numerical modelling and experimental investigation of thermal and material flow in probeless friction stir spot welding process of Al 2198–T8. J Sci Technol Weld Join. 2018;23(8):704–14.
  • [9] Cox C, Lammlein D, Strauss A, Cook G. Modeling the control of an elevated tool temperature and the effects on axial force during friction stir welding. Mater Manuf Process. 2010;25:1278–82.
  • [10] Atharifar H, Lin D, Kovacevic R. Numerical and experimental investigations on the loads carried by the tool during friction stirwelding. J Mater Eng Perform. 2009;18(4):339–50.
  • [11] Chen G, Shi QY, Zhang S. Recent development and applications of CFD simulation for friction stir welding. In: Nacstac L, Pericleous K, Sabau AS, Zhang L, Thomas BG, editors. CFD Modeling and Simulation in Materials Processing. Cham: Springer Nature; 2018. p. 113–118.
  • [12] Venukumar S, Yalagi S, Muthukumaran S. Comparison of microstructure and mechanical properties of conventional and refilled friction stir spot welds in AA 6061–T6 using filler plate. Trans Nonferrous Met Soc China. 2013;23:2833–42.
  • [13] Rosendo T, Parra B, Tier MAD, da Silva AAM, dos Santos JF, Strohaecker TR, Alcântara NG. Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminum alloy. Mater Des. 2011;32:1094–100.
  • [14] Shen Z, Ding Y, Chen J, Gerlich AP. Comparison of fatigue behavior in Mg/Mg similar and Mg/steel dissimilar refill friction stir spot welds. Int J Fatigue. 2016;92(1):78–86.
  • [15] Cao JY, Wang M, Kong L, Zhao HX, Chai P. Microstructure, texture and mechanical properties during refill friction stir spot welding of 6061–T6 alloy. Mater Charact. 2017;128:54–62.
  • [16] Tier MD, Rosendo TS, dos Santos JF, Huber N, Mazzaferro JA, Mazzaferro CP, Strohaecker TR. The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds. J Mater Process Technol. 2013;213:997–1005.
  • [17] Ravichandran SP. Comparison of Refill Friction Stir Spot Welding Versus Riveting in Aircraft Applications. MSc Thesis. Wichita State University, Wichita, USA, 2019.
  • [18] Li Z, Ji S, Ma Y, Chai P, Yue Y, Gao S. Fracture mechanism of refill friction stir spot-welded 2024–T4 aluminium alloy. Int J Adv Manuf Technol. 2016;86:1925–32.
  • [19] Shen Z, Yang X, Zhang Z, Cui L, Li T. Microstructure and failure mechanisms of refill friction stir spot welded 7075–T6 aluminum alloy joints. Mater Des. 2013;44:476–86.
  • [20] Dong H, Chen S, Song Y, Guo X, Zhang X, Sun Z. Refilled friction stir spot welding of aluminum alloy to galvanized steel sheets. Mater Des. 2016;94:457–66.
  • [21] ISO 6892-1:2016. Metallic materials - Tensile testing - Part 1: Method of test at room temperature. International Organization for Standardization: Geneva, Switzerland, 2016.
  • [22] Simufact Forming - Theory manual. Champaign: Computational Applications and System Integration Inc., 2016.
  • [23] Park K. Development and Analysis of Ultrasonic Assisted Friction Stir Welding Process, PhD thesis. University of Michigan, Ann Arbor, USA, 2009.
  • [24] Sallomi KN, Al-Sumaidae S. Numerical validation of temperature distribution in friction stir welded aluminum 7075–T651 plates using pseudo heat transfer model. Ann Chim Sci Mat. 2017;1–2:29–38.
  • [25] Gerlich A, Yamamoto M, North TH. Local melting and tool slippage during friction stir spot welding of Al-alloys. J Mater Sci. 2008;43:2–11.
  • [26] Gerlich A, Avramovic-Cingara G, North TH. Stir zone microstructure and strain rate during Al 7075–T6 friction stir spot welding. Metall Mater Trans A. 2006;37A:2773–866.
  • [27] Suhuddin UFH, Fischer V, dos Santos JF. The thermal cycle during the dissimilar friction spot welding of aluminum and magnesium alloy. Scr Mater. 2013;68:87–90.
  • [28] Gerlich A, Yamamoto M, North TH. Strain rates and grain growth in Al 5754 and Al 6061 friction stir spot welds. Metall Mater Trans A. 2007;38:1291–302.
  • [29] Fratini L, Buffa G, Shivpuri R. Mechanical and metallurgical effects of in process cooling during friction stir welding of AA7075-T6 butt joints. Acta Mater. 2010;58:2056–67.
  • [30] Zhao Y, Liu H, Yang T, Lin Z, Hu Y. Study of temperature and material flow during friction spot welding of 7B04-T74 aluminum alloy. Int J Adv Manuf Technol. 2016;88:1467–75.
  • [31] Song M, Kovacevic R. Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int J Mach Tools Manuf. 2003;43:605–15.
  • [32] Al Zubaidy BMM. Material Interactions in a Novel Refill Friction Stir Spot Welding Approach to Joining Al-Al and Al-Mg Automotive Sheets. PhD Thesis, University of Manchester, Manchester, Great Britain, 2016.
  • [33] Bai Y, Bai Q. Subsea Pipelines and Risers. Amsterdam, Holland: Elsevier Science; 2005.
  • [34] Ji S, Wang Y, Li Z, Yue Y, Chai P. Effect of tool geometry on material flow behavior of refill friction stir spot welding. Trans Indian Inst Met. 2016;70(6):1417–30.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d73599a7-a22a-417d-9824-25f14b0daa70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.