PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Physical restrictions of the flotation of fine particles and ways to overcome them

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work analyses the basic problems of the fine particles flotation and suggests new ways to overcome them. It is well accepted that the poor recovery of fine particles is due to the small collision rate between them and the bubbles due to the significant difference between their sizes. This common opinion is based on a theory, assuming in its first version a laminar regime, but later has been advanced to intermediate turbulence. It accepts that the particles are driven by the streamlines near the bubbles. In reality, the high turbulence in the flotation cells causes myriads of eddies with different sizes and speeds of the rotation driving both bubbles and particles. Yet, a theory accounting for high turbulence exists and states that the collision rate could be much higher. Therefore, we assumed that the problem consists of the low attachment efficiency of the fine particles. Basically, two problems could exist (i) to form a three-phase contact line (TPCL) the fine particle should achieve a certain minimal penetration into the bubble, requiring sufficient push force; (ii) a thin wetting film between the bubble and the particle forms, thus increasing the hydrodynamic resistance between them and making the induction time larger than the collision time. We assumed particles with contact angle θ = 80°, and established a lower size flotation limit of the particles depending mostly on the size of the bubbles, with which they collide. It spans in the range of Rp = 0.16 um to Rp = 0.40 um corresponding to bubbles size range of Rb = 50 um to Rb = 1000 um. Hence, thermodynamically the particle size fraction in the range of Rp = 0.2 um to Rp = 2 um are permitted to float but with small flotation rate due to the small difference between the total push force and maximal resistance force for formation of TPCL. The larger particles approach slowly the bubbles, thus exceeding the collision time. Therefore, most possibly the cavitation of the dissolved gas is the reason for their attachment to the bubbles. To help fine particles float better, the electrostatic attraction between bubbles and particles occurred and achieved about 92% recovery of fine silica particles for about 100 sec. The procedure increased moderately their hydrophobicity from θ ≈ 27.4° to θ ≈ 54.5°. Electrostatic attraction between bubbles and particles with practically no increase of the hydrophobicity of the silica particles ended in 47% recovery. All this is an indication of the high collision rate of the fine particles with the bubbles. Consequently, both, an increase in the hydrophobicity and the electrostatic attraction between particles and bubbles are key for good fine particle flotation. In addition, it was shown experimentally that the capillary pressure during collision affected significantly the attachment efficiency of the particles to the bubbles.
Rocznik
Strony
art. no. 153944
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr.
Twórcy
  • Department of Physical Chemistry, Sofia University,1 James Bourchier Blvd, Sofia 1164, Bulgaria
  • Department of Physical Chemistry, Sofia University,1 James Bourchier Blvd, Sofia 1164, Bulgaria
  • Istanbul University-Cerrahpaşa, Mining Engineering Department, Buyukcekmece, Istanbul, Turkey
autor
  • Adana Alparslan Türkeş Science and Technology University, Mining Engineering Department, Sarıçam, Adana, Turkey
autor
  • School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
  • School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
  • Istanbul University-Cerrahpaşa, Mining Engineering Department, Buyukcekmece, Istanbul, Turkey
  • Istanbul Technical University, Mineral Processing Engineering Department, Maslak, Istanbul, Turkey;
  • Department of Medical Physics and Biophysics, Medical Faculty, Medical University–Sofia, Zdrave Str. 2, Sofia, 1431, Bulgaria
  • Istanbul Technical University, Mineral Processing Engineering Department, Maslak, Istanbul, Turkey
  • Rectorate, Harran University, Şanlıurfa, Turkey
Bibliografia
  • ABRAHAMSON, J., 1975. Collision rates of small particles in a vigorously turbulent fluid. Chem. Eng. Sci. 30(11): 1371-1379.
  • AHMADI, R., D. A. KHODADADI, M. ABDOLLAHY, M. FAN, 2014. Nano-microbubble flotation of fine, ultrafine chalcopyrite particles. International Journal of Mining Science, Technology 24(4): 559-566.
  • AHMED, N., G. J. JAMESON, 1985. The effect of bubble size on the rate of flotation of fine particles. Int. J. Miner. Process. 14(3): 195-215.
  • ALBIJANIC, B., O. OZDEMIR, A. V. NGUYEN, D. BRADSHAW, 2010. A review of induction, attachment times of wetting thin films between air bubbles, particles, its relevance in the separation of particles by flotation.Advances in Colloid, Interface Science 159(1): 1-21.
  • AMELUNXEN, P., R. LADOUCEUR, R. AMELUNXEN, C. YOUNG, 2018. A phenomenological model of entrainment, froth recovery for interpreting laboratory flotation kinetic tests. Minerals Engineering 125: 60-65.
  • ANFRUNS, J. F., J. A. KITCHENER, 1977. "Rate of capture of small particles in flotation." Trans. Inst. Min. Metall. (Sect. C) 86: 9-15.
  • ANIRUDHAN, T. S., S. JALAJAMONY, S. S. SREEKUMARI, 2012. Adsorption of heavy metal ions from aqueous solutions by amine, carboxylate functionalised bentonites. Applied Clay Science 65-66: 67-71.
  • AUSTRALIAN STANDARD (2016). Froth flotation - Basic test (AS 4156.2.1). Cola preparation: Part 2.1: Higher rank coal. Sydney, Standards Australia International. AS 4156.2.1: 1-11.
  • BATCHELOR, G. K. (1956). The theory of homogenous turbulence. Cambridge, Cambridge University Press.
  • CALGAROTO, S., A. AZEVEDO, J. RUBIO, 2015. Flotation of quartz particles assisted by nanobubbles. Int. J. Miner. Process. 137: 64-70.
  • DAI, Z., D. FORNASIERO, J. RALSTON, 1999. Particle-bubble attachment in mineral flotation. J. Colloid Interface Sci. 217(1): 70-76.
  • DE VIVO, D. G., B. L. KARGER, 1970. Studies in the flotation of colloidal particulates:effects of aggregation in the flotation process. Sep. Sci. 5: 145-167.
  • DOBBY, G. S., J. A. FINCH, 1986. A model of particle sliding time for flotation size bubbles. J. Colloid Interface Sci. 109(2): 493-498.
  • DOBBY, G. S., J. A. FINCH, 1987. Particle size dependence in flotation derived from a fundamental model of the capture process. Int. J. Miner. Process. 21(3-4): 241-260.
  • DUKHIN, A. S., P. J. GOETZ (2010). Fundamentals of interface, colloid science. Studies in Interface Science, Elsevier B.V. 24: 21-89.
  • EXEROWA, D., P. M. KRUGLYAKOV (1997). Foam, Foam Films: Theory, Experiment, Application. New York, NY, Marcel Dekker.
  • FARROKHPAY, S., L. FILIPPOV, D. FORNASIERO, 2020. "Flotation of Fine Particles: A Review." Miner. Process. Extr. Metal. Rev.
  • FENG, D., C. ALDRICH, 1999. Effect of particle size on flotation performance of complex sulphide ores. Minerals Engineering 12(7): 721-731.
  • FLINT, L. R., W. J. HOWARTH, 1971. Collision efficiency of small particles with spherical air bubbles. Chem. Eng. Sci. 26(8): 1155-1168.
  • FORNASIERO, D., L. O. FILIPPOV, 2017. Innovations in the flotation of fine, coarse particles. 5th International Conference New Achievements in Materials, Environmental Science, NAMES 2016, Institute of Physics Publishing.
  • FRIEDLANDER, S. K., 1957. Behavior of suspended particles in a turbulent fluid. A.I.Ch.E. Journal 3: 381-385.
  • GUNGOREN, C., O. OZDEMIR, X. WANG, S. G. OZKAN, J. D. MILLER, 2019. Effect of ultrasound on bubble-particle interaction in quartz-amine flotation system. Ultrason. Sonochem. 52: 446-454.
  • HASSANZADEH, A., M. SAFARI, D. H. HOANG, H. KHOSHDAST, B. ALBIJANIC, P. B. KOWALCZUK, 2022. Technological assessments on recent developments in fine, coarse particle flotation systems. Minerals Engineering 180.
  • KARAKASHEV, S. I., M. FIROUZI, J. WANG, L. ALEXANDROVA, A. V. NGUYEN, 2019. On the stability of thin films of pure water. Adv. Colloid Interface Sci. 268: 82-90.
  • KARAKASHEV, S. I., K. W. STÖCKELHUBER, R. TSEKOV, G. HEINRICH, 2013. Bubble Rubbing on Solid Surface: Experimental Study. J Colloid Interface Sci 412: 89-94.
  • KARAKASHEV, S. I., K. W. STOECKELHUBER, R. TSEKOV, 2011. Wetting films on chemically patterned surfaces. J Colloid Interface Sci 363(2): 663-667.
  • KOMASAWA, I., R. KUBOI, T. OTAKE, 1974. Fluid, particle motion in turbulent dispersion—I: Measurement of turbulence of liquid by continual pursuit of tracer particle motion. Chem. Eng. Sci. 29(3): 641-650.
  • KRALCHEVSKY, P. A., K. D. DANOV, N. D. DENKOV, 2008, Chemical Physics of Colloid Systems, Interfaces. Handbook of Surface, Colloid Chemistry. K. S. Birdi, CRC Press: 179-379.
  • KRALCHEVSKY, P. A., K. D. DANOV, N. D. DENKOV, 2016, Chemical Physics of Colloid Systems, Interfaces. Handbook of surface, colloid chemistry. K. S. Birdi. Boca Raron, CRC Press Taylor & Francis Group: 247-413.
  • LEVICH, V. G. (1962). Physicochemical Hydrodynamics. Englewood Cliffs, NJ, Prentice-Hall.
  • LEVINS, D. M., J. F. GLASTONBURY, 1972. Particle-liquid hydrodynamics, mass transfer in a stirred vessel. I. Particle-liquid motion. Trans. Inst. Chem. Eng. 50(1): 32-41.
  • MANOUCHEHRI, H. R., S. FARROKHPAY, 2016. Flotation of fine particles – is it the question of power input, bubble size within the cell? 28th International Mineral Processing Congress, IMPC 2016, Canadian Institute of Mining, Metallurgy, Petroleum.
  • MEYER, C. J., D. A. DEGLON, 2011. Particle collision modeling – A review. Minerals Engineering 24(8): 719-730.
  • MICHAEL, D. H., P. W. NOREY, 1969. Particle collision efficiencies for a sphere. Journal of Fluid Mechanics 37(3): 565-575.
  • NGUYEN, A. V., H. J. SCHULZE (2004). Colloidal science of flotation. New York, Marcel Dekker.
  • OUTHWAITE, C. W., L. B. BHUIYAN, 2021. On the modified Poisson-Boltzmann closure for primitive model electrolytes at high concentration. J. Chem. Phys. 155(1).
  • OZDEMIR, O., C. KARAGUZEL, A. V. NGUYEN, M. S. CELIK, J. D. MILLER, 2009a. Contact angle, bubble attachment studies in the flotation of trona, other soluble carbonate salts. Minerals Engineering 22(2): 168-175.
  • OZDEMIR, O., S. I. KARAKASHEV, A. V. NGUYEN, J. D. MILLER, 2009b. Adsorption, surface tension analysis of concentrated alkali halide brine solutions. Minerals Engineering 22(3): 263-271.
  • PANCHEV, S. (1971). Random Functions, Turbulence, Elsevier Ltd.
  • PEASE, J. D., D. C. CURRY, M. F. YOUNG, 2005. Designing flotation circuits for high fines recovery. Centenary of Flotation Symposium, Brisbane, QLD.
  • PEASE, J. D., M. F. YOUNG, D. CURRY, N. W. JOHNSON, 2010. Improving fines recovery by grinding finer. Transactions of the Institutions of Mining, Metallurgy, Section C: Mineral Processing, Extractive Metallurgy 119(4): 216-222.
  • PHILIPPOFF, W., 1952. Some dynamic phenomena in flotation. Trans. Amer. Inst. Min. Enggrs. Min. Engng. 193 (April): 386-390.
  • PYKE, B., D. FORNASIERO, J. RALSTON, 2003. Bubble particle heterocoagulation under turbulent conditions. Journal of Colloid, Interface Science 265(1): 141-151.
  • RALSTON, J., D. FORNASIERO, S. GRANO, J. DUAN, T. AKROYD, 2007. Reducing uncertainty in mineral flotation-flotation rate constant prediction for particles in an operating plant ore. International Journal of Mineral Processing 84(1-4): 89-98.
  • REAY, D., G. A. RATCLIFF, 1973. Removal of fine particles from water by dispersed air flotation. Effects of bubble size, particle size on collection efficiency. Can. J. Chem. Eng. 51(2): 178-185.
  • REAY, D., G. A. RATCLIFF, 1975. Experimental testing of the hydrodynamic collision model of fine particle flotation. Can. J. Chem. Eng. 53(5): 481-486.
  • RULYOV, N. N., 2001. Turbulent microflotation: Theory, experiment. Coll. Surf. A 192(1-3): 73-91.
  • RULYOV, N. N., N. K. TUSSUPBAYEV, O. V. KRAVTCHENCO, 2015. Combined microflotation of fine quartz. Transactions of the Institutions of Mining, Metallurgy, Section C: Mineral Processing, Extractive Metallurgy 124(4): 217-223.
  • SAFFMAN, P. G., J. S. TURNER, 1956. On the collision of drops in turbulent clouds. J. Fluid Mech. 1(1): 16-30.
  • SCHELUDKO, A., B. V. TOSHEV, D. T. BOJADJIEV, 1976. Attachment of particles to a liquid surface (capillary theory of flotation). J. Chem. Soc., Faraday Trans. 1 72(12): 2815-2828.
  • SCHUBERT, H., 1999. On the turbulence-controlled microprocesses in flotation machines. Int. J. Miner. Process. 56(1-4): 257-276.
  • SCHUBERT, H., E. HEIDENREICH, F. LIEPE, T. NEESSE (1990). Mechanische Verfahrenstechnik. Leipzig, Deutscher Verlag für Grundstoffindustrie.
  • SLAVCHOV, R., B. RADOEV, STOCKELHUBER, K.W., 2005. Equilibrium profile, rupture of wetting film on heterogeneous substrates. Coll. Surf. A 261(1-3): 135-140.
  • SUTHERLAND, K., 1948. The physical chemistry of flotation XI. Kinetics of the flotation process. J. Phys. Chem. 52: 394-425.
  • TRAHAR, W. J., 1976. The selective flotation of galena from sphalerite with special reference to the effects of particle size. Int. J. Miner. Process. 3(2): 151-166.
  • TRAHAR, W. J., 1981. A rational interpretation of the role of particle size in flotation. Int. J. Miner. Process. 8(4): 289-327.
  • VON SMOLUCHOWSKI, M., 1917. "Versucheiner Mathematischen Theorie der Koagulations Kinetic Kolloider Lousungen." Z. Phys. Chem. 92: 129-168.
  • WANG, L., Y. PENG, K. RUNGE, D. J. BRADSHAW, 2015. A review of entrainment: mechanisms, contributing factors, modelling in flotation. Minerals Engineering 70: 77-91.
  • WANG, L., K. RUNGE, Y. PENG, C. VOS, 2016. An empirical model for the degree of entrainment in froth flotation based on particle size, density. Minerals Engineering 98: 187-193.
  • YANG, C., T. DABROS, D. Q. LI, J. CZARNECKI, J. H. MASLIYAH, 2001. Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method. J. Colloid Interface Sci. 243(1): 128-135.
  • YOON, R. H., G. H. LUTTRELL, 1989. The effect of bubble size on fine particle flotation. Miner. Proc. Extract. Met. Rev. 5: 101-122.
  • ZURITA, L., F. CARRIQUE, A. V. DELGADO, 1994. yangThe primary electroviscous effect in silica suspensions. Ionic strength, pH effects. Coll. Surf. A 92(1-2): 23-28.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d734a5d3-4aaa-4cce-84b0-7b10d47107b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.