PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advances in the application of biosynthesized carbon dots as fluorescent probes for bioimaging

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Carbon dots (CDs) are emerging as versatile fluorescent nanoprobes for bioimaging applications due to advantages like tunable emissions, excellent biocompatibility, facile surface functionalization, and ease of synthesis. This review summarizes recent advances in applying biosynthesized CDs for sensitive bioimaging. CDs derived from sustainable biomass sources through green techniques like hydrothermal and microwave synthesis demonstrate bright, excitation-tunable photoluminescence spanning visible to near-infrared spectra. Careful control of synthesis parameters and surface passivation strategies enhance quantum yields above 50% comparable to toxic semiconductor dots. Conjugation with polymers, peptides, and recognition elements like antibodies impart solubility and selectivity towards cancer cells and biomarkers. In vitro validation in standard lines shows targeted organelle imaging abilities. In vivo administration reveals renal clearance pharmacokinetics with preferential tumor accumulation via enhanced permeability effects. Average tumor growth inhibition around 50-80% was achieved in mouse xenografts using CDs-drug formulations through combined therapeutic effects of chemotherapy and photothermal ablation under imaging guidance. However, concerns regarding toxicity from chronic exposures, large-scale reproducible manufacturing, and multimodal imaging capabilities need redressal prior to further clinical translation.
Wydawca
Rocznik
Strony
62--91
Opis fizyczny
Bibliogr. 163 poz., rys., tab.
Twórcy
autor
  • School of Life Science, Guizhou Normal University, Guiyang, Guizhou, China, 550025
autor
  • School of Life Science, Guizhou Normal University, Guiyang, Guizhou, China, 550025
Bibliografia
  • [1] Li H, Yan X, Kong D, Jin R, Sun C, Du D, et al. Recent advances in carbon dots for bioimaging applications. Nanoscale Horizons. 2020;5(2):218–34.
  • [2] Carlson LJ, Krauss TD. Photophysics of individual single-walled carbon nanotubes. Acc Chem Res. 2008 Feb 1;41(2):235–43.
  • [3] Liu Y, Huang H, Cao W, Mao B, Liu Y, Kang Z. Advances in carbon dots: from the perspective of traditional quantum dots. Materials Chemistry Frontiers. 2020;4(6):1586–613.
  • [4] Zhu S, Zhang J, Wang L, Song Y, Zhang G, Wang H, et al. A general route to make non-conjugated linear polymers luminescent. Chem Commun. 2012 Oct 10;48(88):10889–91.
  • [5] Ghosal K, Ghosh A. Carbon dots: The next generation platform for biomedical applications. Materials Science and Engineering: C. 2019 Mar 1;96:887–903.
  • [6] Sagbas S, Sahiner N. 22 – Carbon dots: preparation, properties, and application. In: Khan A, Jawaid M, Inamuddin, Asiri AM, editors. Nanocarbon and its Composites. Woodhead Publishing; 2019 [cited 2024 Jan 31]. p. 651–76. (Woodhead Publishing Series in Composites Science and Engineering). Available from: https://www.sciencedirect.com/science/article/pii/B9780081025093000225
  • [7] Xu D, Lin Q, Chang HT. Recent advances and sensing applications of carbon dots. Small Methods. 2020;4(4):1900387.
  • [8] Gonçalves H, Jorge PAS, Fernandes JRA, Esteves da Silva JCG. Hg(II) sensing based on functionalized carbon dots obtained by direct laser ablation. Sensors and Actuators B: Chemical. 2010 Mar 19;145(2):702–7.
  • [9] Chao-Mujica FJ, Garcia-Hernández L, Camacho-López S, Camacho-López M, Camacho-López MA, Reyes Contreras D, et al. Carbon quantum dots by submerged arc discharge in water: Synthesis, characterization, and mechanism of formation. Journal of Applied Physics. 2021 Apr 22;129(16):163301.
  • [10] Liu M, Xu Y, Niu F, Gooding JJ, Liu J. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst. 2016 Apr 25;141(9):2657–64.
  • [11] Meng W, Bai X, Wang B, Liu Z, Lu S, Yang B. Biomass-derived carbon dots and their applications. Energy & Environmental Materials. 2019;2(3):172–92.
  • [12] Wareing TC, Gentile P, Phan AN. Biomass-based carbon dots: current development and future perspectives. ACS Nano. 2021 Oct 26;15(10):15471–501.
  • [13] Mathew S, Mathew B. A review on the synthesis, properties, and applications of biomass derived carbon dots. Inorganic Chemistry Communications. 2023 Oct 1;156:111223.
  • [14] Long C, Jiang Z, Shangguan J, Qing T, Zhang P, Feng B. Applications of carbon dots in environmental pollution control: A review. Chemical Engineering Journal. 2021 Feb 15;406:126848.
  • [15] Ai L, Yang Y, Wang B, Chang J, Tang Z, Yang B, et al. Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Science Bulletin. 2021 Apr 30;66(8):839–56.
  • [16] Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 2015 Feb 1;8(2):355–81.
  • [17] Zhou J, Yang Y, Zhang C. Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev. 2015 Nov 11;115(21):11669–717.
  • [18] Carrillo-Carrion C, Parak WJ. Design of pyridyl-modified amphiphilic polymeric ligands: towards better passivation of water-soluble colloidal quantum dots for improved optical performance. Journal of Colloid and Interface Science. 2016 Sep 15;478:88–96.
  • [19] Fan Y, Liu H, Han R, Huang L, Shi H, Sha Y, et al. Extremely high brightness from polymer-encapsulated quantum dots for two-photon cellular and deep-tissue imaging. Sci Rep. 2015 Apr 24;5(1):9908.
  • [20] Zhou Y, Mintz KJ, Sharma SK, Leblanc RM. Carbon dots: diverse preparation, application, and perspective in surface chemistry. Langmuir. 2019 Jul 16;35(28):9115–32.
  • [21] Li S, Guo Z, Zhang Y, Xue W, Liu Z. Blood compatibility evaluations of fluorescent carbon dots. ACS Appl Mater Interfaces. 2015 Sep 2;7(34):19153–62.
  • [22] Peng Z, Ji C, Zhou Y, Zhao T, Leblanc RM. Polyethylene glycol (PEG) derived carbon dots: preparation and applications. Applied Materials Today. 2020 Sep 1;20:100677.
  • [23] Qian J, Quan F, Zhao F, Wu C, Wang Z, Zhou L. Aconitic acid derived carbon dots: conjugated interaction for the detection of folic acid and fluorescence targeted imaging of folate receptor overexpressed cancer cells. Sensors and Actuators B: Chemical. 2018 Jun 1;262:444–51.
  • [24] Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine. 2017;12:1227–49.
  • [25] Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysico-chemical interactions at the nano–bio interface. Nature Materials. 2009;8(7):543–57.
  • [26] Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein–nanoparticle interactions: opportunities and challenges. Chemical Reviews. 2011;111(9):5610–37.
  • [27] Treuel L, Jiang X, Nienhaus GU. New views on cellular uptake and trafficking of manufactured nanoparticles. Journal of the Royal Society Interface. 2013;10(82):20120939.
  • [28] Yang K, Ma YQ. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature Nanotechnology. 2010;5(8):579–83.
  • [29] Raniszewski G, Pyc M, Kolacinski Z. Optimization of magnetic field-assisted synthesis of carbon nanotubes for sensing applications. Sensors. 2014 Oct;14(10):18474–83.
  • [30] Sidorov AI, Lebedev VF, Kobranova AA, Nashchekin AV. Formation of carbon quantum dots and nanodiamonds in laser ablation of a carbon film. Quantum Electron. 2018 Jan 1;48(1):45.
  • [31] Zhou J, Booker C, Li R, Zhou X, Sham TK, Sun X, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc. 2007 Jan 1;129(4): 744–5.
  • [32] Du X, Zhang M, Ma Y, Wang X, Liu Y, Huang H, et al. Size-dependent antibacterial of carbon dots by selective absorption and differential oxidative stress of bacteria. Journal of Colloid and Interface Science. 2023 Mar 15;634:44–53.
  • [33] Huang H, Lv JJ, Zhou DL, Bao N, Xu Y, Wang AJ, et al. One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Advances. 2013;3(44):21691–6.
  • [34] Pei S, Zhang J, Gao M, Wu D, Yang Y, Liu R. A facile hydrothermal approach towards photoluminescent carbon dots from amino acids. Journal of Colloid and Interface Science. 2015 Feb 1;439:129–33.
  • [35] Edison TNJI, Atchudan R, Sethuraman MG, Shim JJ, Lee YR. Microwave assisted green synthesis of fluorescent N-doped carbon dots: cytotoxicity and bioimaging applications. Journal of Photochemistry and Photobiology B: Biology. 2016 Aug 1;161:154–61.
  • [36] Schneider J, Reckmeier CJ, Xiong Y, von Seckendorff M, Susha AS, Kasák P, et al. Molecular fluorescence in citric acid-based carbon dots. J Phys Chem C. 2017 Jan 26;121(3):2014–22.
  • [37] Wang H, Lu F, Ma C, Ma Y, Zhang M, Wang B, et al. Carbon dots with positive surface charge from tartaric acid and m-aminophenol for selective killing of Gram-positive bacteria. Journal of Materials Chemistry B. 2021;9(1):125–30.
  • [38] Sahiner N, Suner SS, Sahiner M, Silan C. Nitrogen and sulfur doped carbon dots from amino acids for potential biomedical applications. J Fluoresc. 2019 Sep 1;29(5):1191–200.
  • [39] Li L, Zhang R, Lu C, Sun J, Wang L, Qu B, et al. In situ synthesis of NIR-light emitting carbon dots derived from spinach for bio-imaging applications. J Mater Chem B. 2017 Sep 13;5(35):7328–34.
  • [40] Bandi R, Reddy Gangapuram B, Dadigala R, Eslavath R, S. Singh S, Guttena V. Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Advances. 2016;6(34): 28633–9.
  • [41] Mehta VN, Jha S, Basu H, Singhal RK, Kailasa SK. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensors and Actuators B: Chemical. 2015 Jul 5;213:434–43.
  • [42] Prasannan A, Imae T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res. 2013 Nov 6;52(44):15673–8.
  • [43] Phadke C, Mewada A, Dharmatti R, Thakur M, Pandey S, Sharon M. Biogenic synthesis of fluorescent carbon dots at ambient temperature using Azadirachta indica (Neem) gum. J Fluoresc. 2015 Jul 1;25(4):1103–7.
  • [44] Wang X, Zhang Y, Kong H, Cheng J, Zhang M, Sun Z, et al. Novel mulberry silkworm cocoon-derived carbon dots and their anti-inflammatory properties. Artificial Cells, Nanomedicine, and Biotechnology. 2020 Jan 1;48(1):68–76.
  • [45] Jiang C, Wu H, Song X, Ma X, Wang J, Tan M. Presence of photoluminescent carbon dots in Nescafe§original instant coffee: applications to bioimaging. Talanta. 2014 Sep 1;127:68–74.
  • [46] Hu Y, Yang J, Tian J, Jia L, Yu JS. Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon. 2014 Oct 1;77:775–82.
  • [47] Wang D, Zhu L, Mccleese C, Burda C, Chen JF, Dai L. Fluorescent carbon dots from milk by microwave cooking. RSC Advances. 2016;6(47):41516–21.
  • [48] Zhang Z, Sun W, Wu P. Highly photoluminescent carbon dots derived from egg white: facile and green synthesis, photoluminescence properties, and multiple applications. ACS Sustainable Chem Eng. 2015 Jul 6;3(7):1412–8.
  • [49] Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Dou Y. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosensors and Bioelectronics. 2014 Oct 15;60:292–8.
  • [50] Zhang M, Wang H, Liu P, Song Y, Huang H, Shao M, et al. Biotoxicity of degradable carbon dots towards microalgae Chlorella vulgaris. Environ Sci: Nano. 2019 Nov 7;6(11):3316–23.
  • [51] Godavarthi S, Mohan Kumar K, Vázquez Vélez E, Hernandez-Eligio A, Mahendhiran M, Hernandez-Como N, et al. Nitrogen doped carbon dots derived from Sargassum fluitans as fluorophore for DNA detection. Journal of Photochemistry and Photobiology B: Biology. 2017 Jul 1;172:36–41.
  • [52] Ramanan V, Thiyagarajan SK, Raji K, Suresh R, Sekar R, Ramamurthy P. Outright green synthesis of fluorescent carbon dots from eutrophic algal blooms for in vitro imaging. ACS Sustainable Chem Eng. 2016 Sep 6;4(9):4724–31.
  • [53] Zhang C, Xiao Y, Ma Y, Li B, Liu Z, Lu C, et al. Algae biomass as a precursor for synthesis of nitrogen-and sulfur-co-doped carbon dots: a better probe in Arabidopsis guard cells and root tissues. Journal of Photochemistry and Photobiology B: Biology. 2017 Sep 1;174:315–22.
  • [54] Agnol LD, Neves RM, Maraschin M, Moura S, Ornaghi HL, Dias FTG, et al. Green synthesis of Spirulina-based carbon dots for stimulating agricultural plant growth. Sustainable Materials and Technologies. 2021 Dec 1;30:e00347.
  • [55] Li Y, Liu F, Cai J, Huang X, Lin L, Lin Y, et al. Nitrogen and sulfur co-doped carbon dots synthesis via one-step hydrothermal carbonization of green alga and their multifunctional applications. Microchemical Journal. 2019 Jun 1;147:1038–47.
  • [56] Funke A, Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining. 2010;4(2):160–77.
  • [57] Wang B, Yu J, Sui L, Zhu S, Tang Z, Yang B, et al. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal. Advanced Science. 2021;8(1):2001453.
  • [58] Zhang Y, Wang Y, Feng X, Zhang F, Yang Y, Liu X. Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots. Applied Surface Science. 2016 Nov 30;387:1236–46.
  • [59] Medeiros TV de, Manioudakis J, Noun F, Macairan JR, Victoria F, Naccache R. Microwave-assisted synthesis of carbon dots and their applications. J Mater Chem C. 2019 Jun 20;7(24):7175–95.
  • [60] Ang WL, Boon Mee CAL, Sambudi NS, Mohammad AW, Leo CP, Mahmoudi E, et al. Microwave-assisted conversion of palm kernel shell biomass waste to photoluminescent carbon dots. Sci Rep. 2020 Dec 3;10(1):21199.
  • [61] Simsek S, Ozge Alas M, Ozbek B, Genc R. Evaluation of the physical properties of fluorescent carbon nanodots synthesized using Nerium oleander extracts by microwave-assisted synthesis methods. Journal of Materials Research and Technology. 2019 May 1;8(3):2721–31.
  • [62] Dang H, Huang LK, Zhang Y, Wang CF, Chen S. Large-scale ultrasonic fabrication of white fluorescent carbon dots. Ind Eng Chem Res. 2016 May 11;55(18):5335–41.
  • [63] Zhang Y, Xiao J, Zhuo P, Yin H, Fan Y, Liu X, et al. Carbon dots exhibiting concentration-dependent full-visible-spectrum emission for light-emitting diode applications. ACS Appl Mater Interfaces. 2019 Dec 11;11(49):46054–61.
  • [64] Li D, Ushakova EV, Rogach AL, Qu S. Optical properties of carbon dots in the deep-red to near-infrared region are attractive for biomedical applications. Small. 2021;17(43):2102325.
  • [65] Jiang L, Ding H, Xu M, Hu X, Li S, Zhang M, et al. UV–Vis–NIR full-range responsive carbon dots with large multiphoton absorption cross sections and deep-red fluorescence at nucleoli and in vivo. Small. 2020;16(19):2000680.
  • [66] Ding H, Zhou X, Qin B, Zhou Z, Zhao Y. Highly fluorescent near-infrared emitting carbon dots derived from lemon juice and its bioimaging application. Journal of Luminescence. 2019 Jul 1;211:298–304.
  • [67] Tang C, Long R, Tong X, Guo Y, Tong C, Shi S. Dual-emission biomass carbon dots for near-infrared ratiometric fluorescence determination and imaging of ascorbic acid. Microchemical Journal. 2021 May 1;164:106000.
  • [68] Ding H, Ji Y, Wei JS, Gao QY, Zhou ZY, Xiong HM. Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. J Mater Chem B. 2017 Jul 4;5(26):5272–7.
  • [69] Vijeata A, Chaudhary GR, Umar A, Chaudhary S. Distinctive solvatochromic response of fluorescent carbon dots derived from different components of Aegle Marmelos plant. Engineered Science. 2021;15:197–209.
  • [70] Vasimalai N, Vilas-Boas V, Gallo J, de Fátima Cerqueira M, Menéndez-Miranda M, Costa-Fernández JM, et al. Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition. Beilstein journal of nanotechnology. 2018;9(1):530–44.
  • [71] Gedda G, Sankaranarayanan SA, Putta CL, Gudimella KK, Rengan AK, Girma WM. Green synthesis of multi-functional carbon dots from medicinal plant leaves for antimicrobial, antioxidant, and bioimaging applications. Sci Rep. 2023 Apr 19;13(1):6371.
  • [72] Zhou Y, Zahran EM, Quiroga BA, Perez J, Mintz KJ, Peng Z, et al. Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Applied Catalysis B: Environmental. 2019 Jul 5;248:157–66.
  • [73] Han Z, He L, Pan S, Liu H, Hu X. Hydrothermal synthesis of carbon dots and their application for detection of chlorogenic acid. Luminescence. 2020;35(7):989–97.
  • [74] Li J, Ma S, Xiao X, Zhao D. The one-step preparation of green-emissioned carbon dots through hydrothermal route and its application. Journal of Nanomaterials. 2019 Apr 17;2019:e8628354.
  • [75] Chen BB, Liu ML, Li CM, Huang CZ. Fluorescent carbon dots functionalization. Advances in Colloid and Interface Science. 2019 Aug 1;270:165–90.
  • [76] Watcharamongkol T, Khaopueak P, Seesuea C, Wechakorn K. Green hydrothermal synthesis of multifunctional carbon dots from cassava pulps for metal sensing, antioxidant, and mercury detoxification in plants. Carbon Resources Conversion. 2024 Jun 1;7(2):100206.
  • [77] Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006 Jun 1;128(24):7756–7.
  • [78] Das A, Kundelev EV, Vedernikova AA, Cherevkov SA, Danilov DV, Koroleva AV, et al. Revealing the nature of optical activity in carbon dots produced from different chiral precursor molecules. Light Sci Appl. 2022 Apr 11;11(1):92.
  • [79] Ru Y, Zhang B, Yong X, Sui L, Yu J, Song H, et al. Fullcolor circularly polarized luminescence of CsPbX3 nanocrystals triggered by chiral carbon dots. Advanced Materials. 2023 Feb 1;35(5):2207265.
  • [80] Zhang Z, Chen J, Yan X, Liu X, Chen Y, Zhao C, et al. One-step microwave preparation of carbon dots-composited G-quartet hydrogels with controllable chirality and circularly polarized luminescence. Carbon. 2023 Jan 25;203:39–46.
  • [81] Zhang Y, Liu X, Fan Y, Guo X, Zhou L, Lv Y, et al. One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields. Nanoscale. 2016 Aug 18;8(33):15281–7.
  • [82] Sarma D, Majumdar B, Sarma TK. Carboxyl-functionalized carbon dots as competent visible light photocatalysts for aerobic oxygenation of alkyl benzenes: role of surface functionality. ACS Sustainable Chem Eng. 2018 Dec 3;6(12):16573–85.
  • [83] Horo H, Saha M, Das H, Mandal B, Kundu LM. Synthesis of highly fluorescent, amine-functionalized carbon dots from biotin-modified chitosan and silk-fibroin blend for target-specific delivery of antitumor agents. Carbohydrate Polymers. 2022 Feb 1;277: 118862.
  • [84] Zhao D, Zhang R, Liu X, Li X, Xu M, Huang X, et al. Screening of chitosan derivatives-carbon dots based on antibacterial activity and application in anti-Staphylococcus aureus biofilm. International Journal of Nanomedicine. 2022 Mar 4;17:937–52.
  • [85] Liu Y, Liang F, Sun J, Xu X, Deng C, Sun R, et al. A cellulose nanocrystal-carbon dots@cholestrol fluorescent probe for imaging of plasma membrane with extended time scale. Sensors and Actuators B: Chemical. 2024 Apr 15;405:135371.
  • [86] Havrdova M, Hola K, Skopalik J, Tomankova K, Petr M, Cepe K, et al. Toxicity of carbon dots—Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon. 2016 Apr 1;99:238–48.
  • [87] Ma X, Dong Y, Sun H, Chen N. Highly fluorescent carbon dots from peanut shells as potential probes for copper ion: The optimization and analysis of the synthetic process. Materials Today Chemistry. 2017 Sep 1;5:1–10.
  • [88] Lu B, Chen X, Ouyang X, Li Z, Yang X, Khan Z, et al. The roles of novel chitooligosaccharide-peanut oligopeptide carbon dots in improving the flavor quality of Chinese cabbage. Food Chemistry: X. 2023 Dec 30;20:100963.
  • [89] Wee SS, Ng YH, Ng SM. Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions. Talanta. 2013 Nov 15;116:71–6.
  • [90] Konwar A, Gogoi N, Majumdar G, Chowdhury D. Green chitosan–carbon dots nanocomposite hydrogel film with superior properties. Carbohydrate Polymers. 2015 Jan 22;115:238–45.
  • [91] Han B, Wang W, Wu H, Fang F, Wang N, Zhang X, et al. Polyethyleneimine modified fluorescent carbon dots and their application in cell labeling. Colloids and Surfaces B: Biointerfaces. 2012 Dec 1;100:209–14.
  • [92] Gonçalves H, Esteves da Silva JCG. Fluorescent carbon dots capped with peg200 and mercaptosuccinic acid. J Fluoresc. 2010 Sep 1;20(5):1023–8.
  • [93] Zhao X, Zhang J, Shi L, Xian M, Dong C, Shuang S. Folic acid-conjugated carbon dots as green fluorescent probes based on cellular targeting imaging for recognizing cancer cells. RSC Advances. 2017;7(67):42159–67.
  • [94] Wang HJ, Zhang J, Liu YH, Luo TY, He X, Yu XQ. Hyaluronic acid-based carbon dots for efficient gene delivery and cell imaging. RSC Advances. 2017;7(25):15613–24.
  • [95] Wang Z, Yang B, Chen Z, Liu D, Jing L, Gao C, et al. Bioinspired cryoprotectants of glucose-based carbon dots. ACS Appl Bio Mater. 2020 Jun 15;3(6):3785–91.
  • [96] Li D, Fan Y, Shen M, Bányai I, Shi X. Design of dual drug-loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells. J Mater Chem B. 2019 Jan 2;7(2):277–85.
  • [97] Zulfajri M, Sudewi S, Damayanti R, Gary Huang G. Rambutan seed waste-derived nitrogen-doped carbon dots with l-aspartic acid for the sensing of Congo red dye. RSC Advances. 2023;13(10):6422–32.
  • [98] Li Z, Wang T, Gu L, Wang H, Zhao Y, Lu S, et al. N-doped carbon dots modified with the epithelial cell adhesion molecule antibody as an imaging agent for HepG2 cells using their ultra-sensitive response to Al3+. Nanotechnology. 2020 Oct;31(48):485703.
  • [99] Demir B, Moulahoum H, Ghorbanizamani F, Barlas FB, Yesiltepe O, Gumus ZP, et al. Carbon dots and curcumin-loaded CD44-Targeted liposomes for imaging and tracking cancer chemotherapy: A multi-purpose tool for theranostics. Journal of Drug Delivery Science and Technology. 2021 Apr 1;62: 102363.
  • [100] Li Z, Ni J, Liu L, Gu L, Wu Z, Li T, et al. Imaging-guided chemo–photothermal polydopamine carbon dots for EpCAM-targeted delivery toward liver tumor. ACS Appl Mater Interfaces. 2021 Jun 30;13(25):29340–8.
  • [101] Zhu L, Xu G, Song Q, Tang T, Wang X, Wei F, et al. Highly sensitive determination of dopamine by a turn-on fluorescent biosensor based on aptamer labeled carbon dots and nano-graphite. Sensors and Actuators B: Chemical. 2016 Aug 1;231:506–12.
  • [102] Liu R, Zhang L, Zhao J, Luo Z, Huang Y, Zhao S. Aptamer and IR820 dual-functionalized carbon dots for targeted cancer therapy against hypoxic tumors based on an 808 nm laser-triggered three-pathway strategy. Advanced Therapeutics. 2018;1(5):1800041.
  • [103] Rai S, Singh BK, Bhartiya P, Singh A, Kumar H, Dutta PK, et al. Lignin derived reduced fluorescence carbon dots with theranostic approaches: Nano-drug-carrier and bioimaging. Journal of Luminescence. 2017 Oct 1;190:492–503.
  • [104] Zhang L, Wang Z, Wang H, Dong W, Liu Y, Hu Q, et al. Nitrogen-doped carbon dots for wash-free imaging of nucleolus orientation. Microchim Acta. 2021 May 10;188(6):183.
  • [105] Sachdev A, Matai I, Gopinath P. Dual-functional carbon dots–silver@zinc oxide nanocomposite: in vitro evaluation of cellular uptake and induction of apoptosis. J Mater Chem B. 2015 Feb 4;3(7):1217–29.
  • [106] Guan C, Zhao Y, Hou Y, Shan G, Yan D, Liu Y. Glycosylated liposomes loading carbon dots for targeted recognition to HepG2 cells. Talanta. 2018 May 15;182:314–23.
  • [107] Mohammadi S, Salimi A, Hoseinkhani Z, Ghasemi F, Mansouri K. Carbon dots hybrid for dual fluorescent detection of microRNA-21 integrated bioimaging of MCF-7 using a microfluidic platform. Journal of Nanobiotechnology. 2022 Feb 8;20(1):73.
  • [108] Shen Y, Wu T, Wang Y, Zhang SL, Zhao X, Chen HY, et al. Nucleolin-targeted ratiometric fluorescent carbon dots with a remarkably large emission wavelength shift for precise imaging of cathepsin B in living cancer cells. Anal Chem. 2021 Mar 2;93(8):4042–50.
  • [109] Shu M, Gao F, Yu C, Zeng M, He G, Wu Y, et al. Dual-targeted therapy in HER2-positive breast cancer cells with the combination of carbon dots/HER3 siRNA and trastuzumab. Nanotechnology. 2020 May;31(33):335102.
  • [110] Zhang X, Chen L, Wei YY, Yang YZ, Liu XG, Du JL, et al. Advances in organelle-targeting carbon dots. Fullerenes, Nanotubes and Carbon Nanostructures. 2021 May 4;29(5):394–406.
  • [111] Jung YK, Shin E, Kim BS. Cell nucleus-targeting zwitterionic carbon dots. Sci Rep. 2015 Dec 22;5(1):18807.
  • [112] He H, Chen X, Feng Z, Liu L, Wang Q, Bi S. Nanoscopic imaging of nucleolar stress enabled by protein-mimicking carbon dots. Nano Lett. 2021 Jul 14;21(13):5689–96.
  • [113] Hua XW, Bao YW, Wu FG. Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl Mater Interfaces. 2018 Apr 4;10(13):10664–77.
  • [114] Geng X, Sun Y, Li Z, Yang R, Zhao Y, Guo Y, et al. Retrosynthesis of tunable fluorescent carbon dots for precise long-term mitochondrial tracking. Small. 2019;15(48):1901517.
  • [115] Guo S, Sun Y, Li J, Geng X, Yang R, Zhang X, et al. Fluorescent carbon dots shuttling between mitochondria and the nucleolus for in situ visualization of cell viability. ACS Appl Bio Mater. 2021 Jan 18;4(1):928–34.
  • [116] Geng X, Sun Y, Guo Y, Zhao Y, Zhang K, Xiao L, et al. Fluorescent carbon dots for in situ monitoring of lysosomal ATP levels. Anal Chem. 2020 Jun 2;92(11):7940–6.
  • [117] Chen H, Wang GD, Tang W, Todd T, Zhen Z, Tsang C, et al. Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging. Advanced materials (Deerfield Beach, Fla). 2014;26(39):6761.
  • [118] Liao J, Yao Y, Lee CH, Wu Y, Li P. In vivo biodistribution, clearance, and biocompatibility of multiple carbon dots containing nanoparticles for biomedical application. Pharmaceutics. 2021 Nov;13(11):1872.
  • [119] Srivastava I, Sar D, Mukherjee P, Schwartz-Duval AS, Huang Z, Jaramillo C, et al. Enzyme-catalysed biodegradation of carbon dots follows sequential oxidation in a time dependent manner. Nanoscale. 2019 Apr 25;11(17):8226–36.
  • [120] Yang Y, Ren X, Sun Z, Fu C, Liu T, Meng X, et al. Toxicity and bio-distribution of carbon dots after single inhalation exposure in vivo. Chinese Chemical Letters. 2018 Jun 1;29(6):895–8.
  • [121] Huang X, Zhang F, Zhu L, Choi KY, Guo N, Guo J, et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano. 2013 Jul 23;7(7):5684–93.
  • [122] Liu Z, Chen W, Li Y, Xu Q. Integrin αvβ3-targeted C-dot nanocomposites as multifunctional agents for cell targeting and photoacoustic imaging of superficial malignant tumors. Anal Chem. 2016 Dec 6;88(23):11955–62.
  • [123] Bhunia SK, Maity AR, Nandi S, Stepensky D, Jelinek R. Imaging cancer cells expressing the folate receptor with carbon dots produced from folic acid. Chem-BioChem. 2016;17(7):614–9.
  • [124] Seven E, Seven YB, Zhou Y, Poudel-Sharma S, Diaz-Rucco JJ, Cilingir EK, et al. Crossing the blood–brain barrier with carbon dots: uptake mechanism and in vivo cargo delivery. Nanoscale Advances. 2021;3(13):3942–53.
  • [125] Yuan Y, Guo B, Hao L, Liu N, Lin Y, Guo W, et al. Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy. Colloids and Surfaces B: Biointerfaces. 2017 Nov 1;159:349–59.
  • [126] Chowdhury M, Kumar Das P. Paclitaxel-loaded biotinylated Fe2+-doped carbon dot: combination therapy in cancer treatment. ACS Appl Bio Mater. 2021 Jun 21;4(6):5132–44.
  • [127] Ahmed A, Shahadat M, Shahid ul Islam, Adnan R, Mohamad Ibrahim MN, Ullah Q. Synthesis, characterization, and properties of green carbon nanodots. In: Green Carbon Materials for Environmental Analysis: Emerging Research and Future Opportunities. American Chemical Society; 2023. p. 25–39. (ACS Symposium Series; vol. 1441). Available from: https://doi.org/10.1021/bk-2023-1441.ch002
  • [128] Campalani C, Rigo D. Continuous flow synthesis and applications of carbon dots: a mini-review. Next Sustainability. 2023 Mar 1;1:100001.
  • [129] Gellé A, Jin T, de la Garza L, Price GD, Besteiro LV, Moores A. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem Rev. 2020 Jan 22;120(2):986–1041.
  • [130] Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, et al. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials. 2014 Jun 1;35(19):5041–8.
  • [131] Wang Y, Guo G, Gao J, Li Z, Yin X, Zhu C, et al. Multicenter-emitting carbon dots: color tunable fluorescence and dynamics monitoring oxidative stress in vivo. Chem Mater. 2020 Oct 13;32(19):8146–57.
  • [132] Zhang W, Sigdel G, Mintz KJ, Seven ES, Zhou Y, Wang C, et al. Carbon dots: a future blood–brain barrier penetrating nanomedicine and drug nanocarrier. International Journal of Nanomedicine. 2021 Jul 23 [cited 2024 Mar 27]; Available from: https://www.tandfonline.com/doi/abs/10.2147/IJN.S318732
  • [133] Luo P, Li C, Shi G. Synthesis of gold@ carbon dots composite nanoparticles for surface enhanced Raman scattering. Physical Chemistry Chemical Physics. 2012;14(20):7360–6.
  • [134] Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M, et al. Redemissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Advanced Materials. 2015;28(27):4169–77.
  • [135] Choi G, Rejinold NS, Piao H, Choy JH. Inorganic–inorganic nanohybrids for drug delivery, imaging and photo-therapy: recent developments and future scope. Chemical Science. 2021;12(14):5044–63.
  • [136] Kaur H, Sareen S, Mutreja V, Verma M. Spinach-derived carbon dots for the turn-on detection of chromium ions (Cr3+). J Inorg Organomet Polym. 2023 Dec 1;33(12):3703–15.
  • [137] Ren G, Tang M, Chai F, Wu H. One-pot synthesis of highly fluorescent carbon dots from spinach and multipurpose applications. European Journal of Inorganic Chemistry. 2018;2018(2):153–8.
  • [138] Won S, Kim JS. Spinach extract derived carbon dots decorated on ZnO nanorods for photocatalytic dye degradation. Science of Advanced Materials. 2021 May 1;13(5):922–6.
  • [139] Xu X, Cai L, Hu G, Mo L, Zheng Y, Hu C, et al. Redemissive carbon dots from spinach: Characterization and application in visual detection of time. Journal of Luminescence. 2020 Nov 1;227:117534.
  • [140] Yao Z, Lai Z, Chen C, Xiao S, Yang P. Full-color emissive carbon-dots targeting cell walls of onion for in situ imaging of heavy metal pollution. Analyst. 2019 May 28;144(11):3685–90.
  • [141] Ventrella A, Camisasca A, Fontana A, Giordani S. Synthesis of green fluorescent carbon dots from carbon nano-onions and graphene oxide. RSC Advances. 2020;10(60):36404–12.
  • [142] Hu Y, Zhang L, Li X, Liu R, Lin L, Zhao S. Green preparation of S and N Co-Doped carbon dots from water chestnut and onion as well as their use as an off–on fluorescent probe for the quantification and imaging of coenzyme A. ACS Sustainable Chem Eng. 2017 Jun 5;5(6):4992–5000.
  • [143] Salimi Shahraki H, Qurtulen, Ahmad A. Synthesis, characterization of carbon dots from onion peel and their application as absorbent and anticancer activity. Inorganic Chemistry Communications. 2023 Apr 1;150:110514.
  • [144] Aggarwal R, Saini D, Singh B, Kaushik J, Garg AK, Sonkar SK. Bitter apple peel derived photoactive carbon dots for the sunlight induced photocatalytic degradation of crystal violet dye. Solar Energy. 2020 Feb 1;197:326–31.
  • [145] Chatzimarkou A, Chatzimitakos TG, Kasouni A, Sygellou L, Avgeropoulos A, Stalikas CD. Selective FRET-based sensing of 4-nitrophenol and cell imaging capitalizing on the fluorescent properties of carbon nanodots from apple seeds. Sensors and Actuators B: Chemical. 2018 Apr 1;258:1152–60.
  • [146] Li Z, Zhang Y, Niu Q, Mou M, Wu Y, Liu X, et al. A fluorescence probe based on the nitrogen-doped carbon dots prepared from orange juice for detecting Hg2+ in water. Journal of Luminescence. 2017 Jul 1;187:274–80.
  • [147] Kumar D, Singh K, Verma V, Bhatti HS. Synthesis and characterization of carbon quantum dots from orange juice. Journal of Bionanoscience. 2014 Aug 1;8(4):274–9.
  • [148] Mewada A, Pandey S, Shinde S, Mishra N, Oza G, Thakur M, et al. Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Materials Science and Engineering: C. 2013 Jul 1;33(5):2914–7.
  • [149] Raina S, Thakur A, Sharma A, Pooja D, Minhas AP. Bactericidal activity of Cannabis sativa phytochemicals from leaf extract and their derived Carbon Dots and Ag@Carbon Dots. Materials Letters. 2020 Mar 1;262:127122.
  • [150] Vijeata A, Chaudhary GR, Chaudhary S, Umar A. Biogenic synthesis of highly fluorescent carbon dots using Azadirachta indica leaves: An eco-friendly approach with enhanced photocatalytic degradation efficiency towards Malachite green. Chemosphere. 2023 Nov 1;341:139946.
  • [151] Feng J, Wang WJ, Hai X, Yu YL, Wang JH. Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging. J Mater Chem B. 2016 Jan 6;4(3):387–93.
  • [152] Crista DMA, El Mragui A, Algarra M, Esteves da Silva JCG, Luque R, Pinto da Silva L. Turning spent coffee grounds into sustainable precursors for the fabrication of carbon dots. Nanomaterials. 2020 Jun;10(6):1209.
  • [153] Zhang W, Jia L, Guo X, Yang R, Zhang Y, Zhao Z. Green synthesis of up- and down-conversion photoluminescent carbon dots from coffee beans for Fe3+ detection and cell imaging. Analyst. 2019 Dec 2;144(24):7421–31.
  • [154] Hong WT, Yang HK. Anti-counterfeiting application of fluorescent carbon dots derived from wasted coffee grounds. Optik. 2021 Sep 1;241:166449.
  • [155] K K, V BM, P N. A green approach for synthesis of highly fluorescent carbon dots from waste engine oil: A strategy for waste to value added products. Diamond and Related Materials. 2022 Jan 1;121:108724.
  • [156] Murru C, Badía-Laíño R, Díaz-García ME. Synthesis and characterization of green carbon dots for scavenging radical oxygen species in aqueous and oil samples. Antioxidants. 2020 Nov;9(11):1147.
  • [157] Han S, Zhang H, Xie Y, Liu L, Shan C, Li X, et al. Application of cow milk-derived carbon dots/Ag NPs composite as the antibacterial agent. Applied Surface Science. 2015 Feb 15;328:368–73.
  • [158] Kumar A, Kumar I, Gathania AK. Synthesis, characterization and potential sensing application of carbon dots synthesized via the hydrothermal treatment of cow milk. Sci Rep. 2022 Dec 28;12(1):22495.
  • [159] Cardoso-Ávila PE, Pichardo-Molina JL, Vázquez-Olmos M, González-Aguiñaga E. Chicken egg white as a “greener” biomass source for the rapid synthesis of fluorescent carbon dots. Materials Letters. 2024 Mar 1;358:135880.
  • [160] Yu L, He M, Liu S, Dou X, Li L, Gu N, et al. Fluorescent egg white-based carbon dots as a high-sensitivity iron chelator for the therapy of nonalcoholic fatty liver disease by iron overload in zebrafish. ACS Appl Mater Interfaces. 2021 Nov 24;13(46):54677–89.
  • [161] Mandani S, Dey D, Sharma B, Sarma TK. Natural occurrence of fluorescent carbon dots in honey. Carbon. 2017 Aug 1;119:569–72.
  • [162] Surendran P, Lakshmanan A, Priya SS, Balakrishnan K, Rameshkumar P, Kannan K, et al. Bioinspired fluorescence carbon quantum dots extracted from natural honey: Efficient material for photonic and antibacterial applications. Nano-Structures & Nano-Objects. 2020 Oct 1;24:100589.
  • [163] Wu S, Li W, Zhou W, Zhan Y, Hu C, Zhuang J, et al. Large-scale one-step synthesis of carbon dots from yeast extract powder and construction of carbon dots/pva fluorescent shape memory material. Advanced Optical Materials. 2018;6(7):1701150.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7342850-8f93-4c7f-b068-59444d622923
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.