PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Internal Friction of Li7La3Zr2O12 Based Lithium Ionic Conductors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The diffusion mechanisms of lithium ions in tetragonal phase as well as in Al and Nb stabilized cubic Li7La3Zr2O12 compounds were investigated by low-frequency internal friction technique. In the cubic Li7La3Zr2O12 phase, a remarkable relaxation-type internal friction peak PC with a peak height up to 0.12 was observed in the temperature range from 15°C to 60°C. In the tetragonal phase however, the height of the PT peak dropped to 0.01. The obvious difference of the relaxation strength between the cubic and tetragonal phases is due to the different distribution of lithium ions in lattice, ordered in the tetragonal phase and disordered in the cubic phase. Based on the crystalline structure of the cubic garnet-type Li7La3Zr2O12 compound, it is suggested that the high internal friction peak in the cubic phase may be attributed to two diffusion processes of lithium ions: 96h↔96h and 96h↔24d.
Twórcy
autor
  • Key Laboratory of Materials Physics , Institute of Solid State Physics , Chinese Academy of Sciences, Hefei 230031, China
autor
  • Key Laboratory of Materials Physics , Institute of Solid State Physics , Chinese Academy of Sciences, Hefei 230031, China
autor
  • Key Laboratory of Materials Physics , Institute of Solid State Physics , Chinese Academy of Sciences, Hefei 230031, China
autor
  • Key Laboratory of Materials Physics , Institute of Solid State Physics , Chinese Academy of Sciences, Hefei 230031, China
autor
  • Key Laboratory of Materials Physics , Institute of Solid State Physics , Chinese Academy of Sciences, Hefei 230031, China
autor
  • Key Laboratory of Materials Physics , Institute of Solid State Physics , Chinese Academy of Sciences, Hefei 230031, China
autor
  • Key Laboratory of Materials Physics , Institute of Solid State Physics , Chinese Academy of Sciences, Hefei 230031, China
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al . Mickiewicz a 30, 30-059 Kraków, Poland
autor
  • Key Laboratory of Materials Physics , Institute of Solid State Physics , Chinese Academy of Sciences, Hefei 230031, China
Bibliografia
  • [1] M. Ramaswamy, T. Venkataraman, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12, Angew. Chem. International edition 46, 7778-7781 (2007).
  • [2] C. A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, W. Weppner, Crystal chemistry and stability of “Li7La3Zr2O12” garnet: A fast lithium-ion conductor, Inorg. Chem. 50, 1089-1097 (2011).
  • [3] J. L. Allen, J. Wolfenstine, E. Rangasamy, J. Sakamoto, Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12, J. Power Sources 206, 315-319 (2012).
  • [4] S. Kumazaki, Y. Iriyama, K.H. Kim, R. Murugan, K. Tanabe, K. Yamamoto, T. Hiryama, Z. Ogumi, High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si, Electrochem. Commun. 13, 509-512 (2011).
  • [5] E. Rangasamy, J. Wolfenstine, J. Sakamoto, The role of Al and Li concentration on the formation of cubic garnet solid electrolyte, Solid State Ionics 206, 28-32 (2012).
  • [6] M. Xu, M. S.Park, J. M. Lee, T. Y. Kim, Y. S. Park, E. Ma, Mechanisms of Li+ transport in garnet-type cubic Li3+xLa3M2O12 (M = Te, Nb, Zr), Phys. Rev. B 85, 052301 (2012).
  • [7] R. Murugan, S. Ramakumar, N. Janani, High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet, Electrochem. Commun. 13, 1373-1375 (2011).
  • [8] S. Ohta, T. Kobayashi, T. Asaoka, High lithium ionic conductivity in the garnet-type oxide Li7-xLa3(Zr2-xNbx)O12 (x=0~2), J. Power Sources, 196, 3342-3345 (2011).
  • [9] X. P. Wang, Y. Xia, J. Hu, Y. P. Xia, Z. Zhuang, L. J. Guo, H. Lu, T. Zhang, Q.F. Fang, Phase transition and conductivity improvement of tetragonal fast ionic electrolyte Li7La3Zr2O12, Solid State Ionics 253, 137-142 (2013).
  • [10] Y. T. Wen, Z. G. Zhu, F. K. Xie, X. Q. Yang, K. H. Liu, J. Y. Tan, C. Y. Xie, Multifunctional internal friction apparatus, Proceeding of the 2nd National Conference on Internal Friction and Ultrasonic Attenuation in Solids, 133-134 (1988) (in Chinese).
  • [11] X. P. Wang, Y. X. Gao, Y. P. Xia, Z. Zhuang, T. Zhang, Q. F. Fang, Correlation and mechanism of lithium ion diffusion with crystal structure in Li7La3Zr2O12 revealed by internal friction technique, Phys. Chem. Chem. Phys. 16, 7006-7014 (2014).
  • [12] X. P. Wang, D. Li, Q. F. Fang, Z. J. Cheng, G. Corbel, P. Lacorre, Phase transition process in oxide-ion conductors β-La2Mo2O9 accessed by internal friction method, Appl. Phys. Lett. 89, 021904 (2006).
  • [13] X. P. Wang, W. G. Wang, Y. X. Gao, T. Zhang, Q. F. Fang, Low frequency internal friction study of lithium-ion conductor Li5La3Ta2O12, Mater. Sci. Eng. A 521-522, 87-89 (2009).
  • [14] Y. Xia, X. P. Wang, Y. X. Ga, J. Hu, Z. Zhuang, L. J. Guo, Q. F. Fang, C. S. Liu, Correlation of lithium ionic diffusion with Nb concentration in Li7-xLa3Zr2-xNbxO12 evaluated by internal friction method, Chin. Phys. Lett. 31, 016201 (2014).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d72d0fdb-7562-4dff-abf2-0e30bc964e1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.