Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
One of the most critical problems in all practical systems is the presence of uncertainties, internal and external disturbances, as well as disturbing noise, which makes the control of the system a challenging task. Another challenge with the physical systems is the possibility of cyber-attacks that the system’s cyber security against them is a critical issue. The systems related to oil and gas industries may also be subjected to cyber-attacks. The subsets of these industries can be mentioned to the oil and gas transmission industry, where ships have a critical role. This paper uses the Quantitative Feedback Theory (QFT) method to design a robust controller for the ship course system, aiming towards desired trajectory tracking. The proposed controller is robust against all uncertainties, internal and external disturbances, noise, and various possible Deception, Stealth, and Denial-of-Service (DOS) attacks. The robust controller for the ship system is designed using the QFT method and the QFTCT toolbox in MATLAB software. Numerical simulations are performed in MATLAB/Simulink for two case studies with disturbances and attacks involving intermittent sinusoidal and random behavior to demonstrate the proposed controller.
Czasopismo
Rocznik
Tom
Strony
589--605
Opis fizyczny
Bibliogr. 45 poz., rys., wykr., wzory
Twórcy
autor
- Institute of Automatic Control and Robotics, Faculty of Mechatronics, Warsaw University of Technology, Warsaw, Poland
- School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT, Australia
autor
- Institute of Automatic Control and Robotics, Faculty of Mechatronics, Warsaw University of Technology, Warsaw, Poland
autor
- Department of Electronic and Electrical Engineering, University of Strathclyde Glasgow, United Kingdom
Bibliografia
- [1] W. Chang and S. Chakraborty: Resource-aware automotive control systems design: A cyber-physical systems approach. Foundations and Trends in Electronic Design Automation, 10(4), (2016), 249-369. DOI: 10.1561/1000000045.
- [2] Q. Guo, S. Xin, L. Xu, and H. Sun: EMS communication routings’ optimisation to enhance power system security considering cyber-physical interdependence. IET Cyber-Physical Systems: Theory & Applications, 3(1), (2017), 44-53. DOI: 10.1049/iet-cps.2017.0074.
- [3] C. Alcaraz: Cloud-assisted dynamic resilience for cyber-physical control systems. IEEE Wireless Communications, 25(1), (2018), 76-82. DOI: 10.1109/MWC.2018.1700231.
- [4] Y. Liu, D. Lu, L. Deng, T. Bai, K. Hou, and Y. Zeng: Risk assessment for the cascading failure of electric cyber-physical system considering multiple information factors. IET Cyber-Physical Systems: Theory & Applications, 2(4), (2017), 155-160. DOI: 10.1049/iet-cps.2017.0002.
- [5] A. Arrieta, S. Wang, U. Markiegi, G. Sagardui, and L. Etxeberria: Employing multi-objective search to enhance reactive test case generation and prioritization for testing industrial cyber-physical systems. IEEE Transactions on Industrial Informatics, 14(3), (2018), 1055-1066. DOI: 10.1109/TII.2017.2788019.
- [6] B. Chen, D.W. Ho, W.-A. Zhang, and L. Yu: Distributed dimensionality reduction fusion estimation for cyber-physical systems under DoS attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(2), (2019), 455-468. DOI: 10.1109/TSMC.2017.2697450.
- [7] M.L. Corradini and A. Cristofaro: Robust detection and reconstruction of state and sensor attacks for cyber-physical systems using sliding modes. IET Control Theory & Applications, 11(11), (2017), 1756-1766. DOI: 10.1049/iet-cta.2016.1313.
- [8] K. Ding, S. Dey, D.E. Quevedo, and L. Shi: Stochastic game in remote estimation under DoS attacks. IEEE Control Systems Letters, 1(1), (2017), 146-151. DOI: 10.1109/LCSYS.2017.2711044.
- [9] H. Zhang, P. Cheng, L. Shi, and J. Chen: Optimal denial-of-service attack scheduling with energy constraint. IEEE Transactions on Automatic Control, 60(11), (2015), 3023-3028. DOI: 10.1109/TAC.2015.2409905.
- [10] J.A. Stankovic, J.W. Sturges, and J. Eisenberg: A 21st century cyber-physical systems education. Computer, 50(12), (2017), 82-85. DOI: 10.1109/MC.2017.4451222.
- [11] V. Jirkovský, M. Obitko, and V. Mařík: Understanding data heterogeneity in the context of cyber-physical systems integration. IEEE Transactions on Industrial Informatics, 13(2), (2017), 660-667. DOI: 10.1109/TII.2016.2596101.
- [12] S. Wang, D. Liang, L. Ge, and X. Wang: Analytical FRTU deployment approach for reliability improvement of integrated cyber-physical distribution systems. IET Generation, Transmission & Distribution, 10(11), (2016), 2631-2639. DOI: 10.1049/iet-gtd.2015.1050.
- [13] Z. Zhang, W. An, and F. Shao: Cascading failures on reliability in cyber-physical system. IEEE Transactions on Reliability, 65(4), (2016), 1745-1754. DOI: 10.1109/TR.2016.2606125.
- [14] Y. Zhang, C. Qian, J. Lv, and Y. Liu: Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor. IEEE Transactions on Industrial Informatics, 13(2), (2017), 737-747. DOI: 10.1109/TII.2016.2618892.
- [15] A.J. Trappey, C.V. Trappey, U.H. Govindarajan, J.J. Sun, and A.C. Chuang: A review of technology standards and patent portfolios for enabling cyber-physical systems in advanced manufacturing. IEEE Access, 4 (2016), 7356-7382. DOI: 10.1109/ACCESS.2016.2619360.
- [16] M.P. Korukonda, S.R. Mishra, K. Rajawat, and L. Behera: Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems. IET Cyber-Physical Systems: Theory & Applications, 3(1), (2017), 54-62. DOI: 10.1049/iet-cps.2017.0078.
- [17] O. Younis and N. Moayeri: Employing cyber-physical systems: Dynamic traffic light control at road intersections. IEEE Internet of Things Journal, 4(6), (2017), 2286-2296. DOI: 10.1109/JIOT.2017.2765243.
- [18] H. Li, L. Lai, and H.V. Poor: Multicast routing for decentralized control of cyber physical systems with an application in smart grid. IEEE Journal on Selected Areas in Communications, 30(6), (2012), 1097-1107. DOI: 10.1109/JSAC.2012.120708.
- [19] Z. Jiang, Y. Jin, E. Mingcheng, and Q. Li: Distributed dynamic scheduling for cyber-physical production systems based on a multi-agent system. IEEE Access, 6 (2018), 1855-1869. DOI: 10.1109/ACCESS.2017.2780321.
- [20] A.S.S. Abadi, P.A. Hosseinabadi, and S. Mekhilef: Fuzzy adaptive fixed-time sliding mode control with state observer for a class of high-order mismatched uncertain systems. International Journal of Control, Automation and Systems, 18(10), (2020), 2492-2508. DOI: 10.1007/s12555-019-0650-z.
- [21] M.P. Aghababa, S. Khanmohammadi, and G. Alizadeh: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Applied Mathematical Modelling, 35(6), (2011), 3080-3091. DOI: 10.1016/j.apm.2010.12.020.
- [22] P. Alinaghi Hosseinabadi, A. Soltani Sharif Abadi, S. Mekhilef, and H.R. Pota: Chattering-free trajectory tracking robust predefined-time sliding mode control for a remotely operated vehicle. Journal of Control, Automation and Electrical Systems, 31(5), (2020). 1177-1195. DOI: 10.1007/s40313-020-00599-4.
- [23] S. Yu and X. Long: Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. Automatica, 54 (2015), 158-165, DOI: 10.1016/j.automatica.2015.02.001.
- [24] P. Alinaghi Hosseinabadi, A. Soltani Sharif Abadi, S. Mekhilef, and H.R. Pota: Two novel approaches of adaptive finite-time sliding mode control for a class of single-input multiple-output uncertain nonlinear systems. IET Cyber-Systems and Robotics, 3(2), (2021), 173-183. DOI: 10.1049/csy2.12012.
- [25] C.-L. Hwang and J.Y. Hung: Stratified adaptive finite-time tracking control for nonlinear uncertain generalized vehicle systems and its application. IEEE Transactions on Control Systems Technology, 27(3), (2018), 1308-1316. DOI: 10.1109/TCST.2018.2810851.
- [26] L. Zhao, J. Yu , and H. Yu: Adaptive finite-time attitude tracking control for spacecraft with disturbances. IEEE Transactions on Aerospace and Electronic Systems, 54(3), (2017), 1297-1305. DOI: 10.1109/TAES.2017.2780638.
- [27] P. Alinaghi Hosseinabadi, A. Ordys, A. Soltani Sharif Abadi, S. Mekhilef, and H.R. Pota: State and disturbance observers-based chattering-free fixed-time sliding mode control for a class of high-order nonlinear systems. Advanced Control for Applications: Engineering and Industrial Systems, 3(3), (2021). DOI: 10.1002/adc2.81.
- [28] X. Weinan, M. Guangcheng, L. Qinghua, and W. Changhong: Robust H2 control for uncertain sampled-data systems. Journal of Systems Engineering and Electronics, 20(1), (2009), 172-177.
- [29] H. Li, L. Zhang, T. Xiao, and J. Dong: Real-time control for CPS of digital airplane assembly with robust H-infinity theory. Tsinghua Science and Technology, 20(4), (2015), 376-384. DOI: 10.1109/TST.2015.7173453.
- [30] A.S.S. Abadi and P.A. Hosseinabadi: Fuzzy adaptive finite time control ship fin stabilizing systems model of fuzzy Takagi-Sugeno with unknowns and disturbances. 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), 2018, 33-36. DOI: 10.1109/CFIS.2018.8336619.
- [31] D. Cruz-Ortiz, I. Chairez, and A. Poznyak: Safe operation for teleoperated robotic manipulators with restricted synchronization error via non-singular terminal sliding-mode control. Journal of the Franklin Institute, (2022). DOI: 10.1016/j.jfranklin.2022.07.020.
- [32] Q. Han, Y.-S. Zhou, Y.-X. Tang, X.-G. Tuo, and and P. He: Event-triggered finite-time sliding mode control for leader-following second-order non-linear multi-agent systems. IEEE Open Journal of Intelligent Transportation Systems, (2022). DOI: 10.1109/OJITS.2022.3196811.
- [33] P.A. Hosseinabadi, A.S.S. Abadi, and S. Mekhilef: Adaptive terminal sliding mode control of hyper-chaotic uncertain 4-order system with one control input. IEEE Conference on Systems, Process and Control (ICSPC), (2018), 94-99. DOI: 10.1109/SPC.2018.8703979.
- [34] V. Veselý and J. Osuský: Robust control system design in frequency domain. Archives of Control Sciences, 23(1), (2013), 61-78. DOI: 10.2478/v10170-011-0042-y.
- [35] I. Tanyer, E. Tatlicioglu, and E. Zergeroglu: Output tracking control of an aircraft subject to additive state dependent disturbance: an optimal control approach. Archives of Control Sciences, 31(2), (2021), 267-286. DOI: 10.24425/acs.2021.137418.
- [36] R. Munoz-Mansilla, D. Chaos, J. Aranda, and J. Diaz: Application of quantitative feedback theory techniques for the control of a non-holonomic underactuated hovercraft. IET Control Theory & Applications, 6(14), (2012), 2188-2197. DOI: 10.1049/iet-cta.2011.0225.
- [37] M. Veerachary and A.R. Saxena: Design of robust digital stabilizing controller for fourth-order boost DC-DC converter: A quantitative feed-back theory approach. IEEE Transactions on Industrial Electronics, 59(2), (2012), 952-963. DOI: 10.1109/TIE.2011.2158040.
- [38] M. Garcia-Sanz, I. Egańa , and M. Barreras: Design of quantitative feed-back theory non-diagonal controllers for use in uncertain multiple-input multiple-output systems. IEE Proceedings-Control Theory and Applications, 152(2), (2005), 177-187. DOI: 10.1049/ip-cta:20041186.
- [39] T.I. Fossen: Guidance and control of ocean vehicles. John Wiley & Sons Inc, 1994.
- [40] N. Wang, S. Lv, and Z. Liu: Global finite-time heading control of surface vehicles. Neurocomputing, 175 (2016), 662-666. DOI: 10.1016/j.neucom.2015.10.106.
- [41] Y. Peng, J. Han, and and Z. Wu: Nonlinear backstepping design of ship steering controller: using unscented Kalman filter to estimate the uncertain parameters. IEEE International Conference on Automation and Logistics, (2007), 126-131. DOI: 10.1109/ICAL.2007.4338543.
- [42] J.C. Doyle: Quantitative feedback theory (QFT) and robust control. American Control Conference, (1986), 1691-1698. DOI: 10.23919/ACC.1986.4789202.
- [43] A. Gera and I. Horowitz: Optimization of the loop transfer function. International Journal of Control, 31(22), (1980), 389-398. DOI: 10.1080/00207178008961049.
- [44] V.K. Jadhav, C.B. Kadu, and B.J. Parvat: Robust controller design using quantitative feedback theory (QFT). International Journal of Computer Applications, 47(7), (2012), 9-13. DOI: 10.5120/7198-9975.
- [45] C. Houpis, S. Rasmussen, and M. Garcia-Sanz: Quantitative feedback theory: fundamentals and applications. CRC Taylor & Francis, 2006. DOI: 10.1201/b15907.
Uwagi
1. Andrew Ordys acknowledges support from National Agency of Academic Exchange (NAWA), “Polish Returns”, grant No: PPN/PPO/2018/1/00063/U/00001. Ali Soltani Sharif Abadi acknowledges support from Warsaw University of Technology (WUT), grant No: 504440200003
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d729c9f6-9a11-4164-90e6-618f6c8bb8ed