PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Autonomous Wearable Sensor Node for Long-Term Healthcare Monitoring Powered by a Photovoltaic Energy Harvesting System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an autonomous wearable sensor node is developed for long-term continuous healthcare monitoring. This node is used to monitor the body temperature and heart rate of a human through a mobile application. Thus, it includes a temperature sensor, a heart pulse sensor, a low-power microcontroller, and a Bluetooth low energy (BLE) module. The power supply of the node is a lithium-ion rechargeable battery, but this battery has a limited lifetime. Therefore, a photovoltaic (PV) energy harvesting system is proposed to prolong the battery lifetime of the sensor node. The PV energy harvesting system consists of a flexible photovoltaic panel, and a charging controller. This PV energy harvesting system is practically tested outdoor under lighting intensity of 1000 W/m². Experimentally, the overall power consumption of the node is 4.97 mW and its lifetime about 246 hours in active-sleep mode. Finally, the experimental results demonstrate long-term and sustainable operation for the wearable sensor node.
Rocznik
Strony
267--272
Opis fizyczny
Bibliogr. 20 poz., fot., rys., wykr.
Twórcy
autor
  • Faculty of Engineering, Ain Shams University, Cairo, Egypt
  • Faculty of Engineering, Ain Shams University, Cairo, Egypt
  • Faculty of Navigation Science and Space Technology, Beni Suef University, Cairo, Egypt
  • Faculty of Engineering, Ain Shams University, Cairo, Egypt
Bibliografia
  • [1] Y. H. Kwak, W. Kim, et al, “Flexible heartbeat sensor for wearable device,” Biosensors and Bioelectronics, vol. 94, 2017, pp. 250–255.
  • [2] C. Seeger, K. Van Laerhoven, A. Buchmann, “Myhealthassistant: An event-driven middleware for multiple medical applications on a smartphone-mediated body sensor network,” IEEE journal of biomedical and health informatics, 2015, 19, (2), pp. 752–760.
  • [3] Taiyang Wu, Fan Wu, Jean-Michel Redoute, et al, “An Autonomous Wireless Body Area Network Implementation towards IoT Connected,” IEEE access, vol. 5, 2017, pp. 11413–11422.
  • [4] Haojun Huang, Jianguo Zhou, Wei Li, Juanbao Zhang, Xu Zhang, Guolin Hou “Wearable indoor localization approach in internet of thigs,” IET Networks, vol. 5, 2016, pp. 122–126.
  • [5] T. Wu, M. S. Arefin, J.-M. Redoute, et al, “A solar energy harvester with an improved MPPT circuit for wearable IoT,” Int. Conf. IEEE. Body Area Networks (Bodynets), Turin, Italy, 2016, pp. 166–170.
  • [6] T. Wu, M. S. Arefin, D. Shamilovitz, et al, “A flexible and wearable energy harvester with an efficient and fast converging analog MPPT,” Conf. IEEE. Biomedical Circuits and Systems (BioCAS), Shanghai, China, 2016, pp. 336–339.
  • [7] Yang Kuang, Tingwen Ruan, et al, “Meiling Zhu, Energy harvesting during human walking to power a wireless sensor node,” Sens. Actuators A: Phys, vol. 254, 2017, pp. 69–77.
  • [8] A. Dionisi, D. Marioli, E. Sardini, et al, “Autonomous wearable system for vital signs measurement with energy-harvesting module,” IEEE Transactions on Instrumentation and Measurement, vol. 65, 2016, pp. 1423–1434.
  • [9] Jiasha Elizabeth Shaji, Bibin Varghese, et al, “A Health Care Monitoring System with Wireless Body Area Network Using IoT,” International Journal of Recent Trends Engineering & Research, vol. 3, 2017, pp. 112–117.
  • [10] Luís M. Borges, Raul Chávez-Santiago, et al, “Radio-frequency energy harvesting for wearable sensors,” IET Healthcare Technology Letters, vol. 2, 2015, pp. 22–27.
  • [11] A. B. Amar, A. B. Kouki, et al, “Power approaches for implantable medical devices,” Sensors, vol. 15, 2015, pp. 28889–28914.
  • [12] M. A. Hannan, S. Mutashar, S. A. Samad, et al, “Energy harvesting for the implantable biomedical devices: issues and challenges,” Biomedical engineering online, vol. 13, 2014, pp.79.
  • [13] B. Yang, K.-S. Yun, “Piezoelectric shell structures as wearable energy harvesters for effective power generation at low- frequency movement,” Sens. Actuators A: Phys, vol. 188, 2012, pp. 427– 433.
  • [14] Z.G. Wan, Y. K. Tan, et al, “Review on energy harvesting and energy management for sustainable wireless sensor networks,” Int. Conf. IEEE. Communication Technology (ICCT), 2011, pp. 362–367.
  • [15] S. Stoecklin, A. Yousaf, et al, “Efficient wireless powering of biomedical sensor systems for multichannel brain implants,” IEEE Transactions on Instrumentation and Measurement, vol. 65, 2016, pp. 754–764.
  • [16] Thang Viet Tran, Wan-Young Chung, “High- Efficient Energy Harvester with Flexible solar panel for a wearable sensor device,” IEEE Sensors Journal, vol. 16, 2016, pp. 9021–9028.
  • [17] M. Dai, X. Xiao, et al, “A low-power and miniaturized electrocardiograph data collection system with smart textile electrodes for monitoring of cardiac function,” Australasian. Phys. Eng. Sci. Med, vol. 39, 2016, pp. 1029–1040.
  • [18] J. C. Lim, M. Drieberg, et al, “A simple solar energy harvester for wireless sensor networks,” Int. Conf. Intelligent & Advanced Systems (ICIAS), 2016.
  • [19] T. Wu, M. S. Arefin, J.-M. Redoute, et al, “Flexible wearable sensor nodes with solar energy harvesting,” Int. Conf. IEEE. Engineering in Medicine and Biology (EMBC), Seogwipo, South Korea, 2017, pp. 3273–3276.
  • [20] Gaurav Kumar, Km. Shilpa Maurya, et al, “Design and development of heart rate and temperature measuring device using MATLAB,” International Journal of Advanced Research in Electrical, Electronics, and Instrumentation Engineering, vol. 6, 2017, pp. 3366–3372.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d726be89-81ea-4bbe-9a63-9cd9999d4adc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.