PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties evaluation of banana fibre reinforced polymer composites: a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In today's fast-developing world, the use of composite materials is closely related to environmental pollution, renewable and biodegradable resources. A researcher is looking for environmentally friendly materials. Natural and synthetic fibres come in a wide range of shapes and sizes. Natural fibres include jute, straw wheat, rice husk banana fibre, pineapple leaf fibre, cotton, Sisal, Coir, Oats, and Bagasse. Every year, 13.5 tonnes of banana fibre are produced in India. Teabags, paper, and polymer composite reinforcement are just a few of the applications for banana fibre. This article focuses on the manufacture of banana fibre with epoxy and a variety of other natural fibres. By combining banana fibre with some current technology, waste will be reduced, and energy efficiency will be increased, all while supporting sustainability. Banana fibres are covered in this work, along with their uses, applications, and mechanical qualities, as well as how banana fibre might improve mechanical properties.
Twórcy
  • Department of Mechanical Engineering, DIT University, Dehradun, Uttarakhand, India
autor
  • Department of Mechanical Engineering, DIT University, Dehradun, Uttarakhand, India
autor
  • Department of Mechanical Engineering, DIT University, Dehradun, Uttarakhand, India
Bibliografia
  • [1] K. Bilba, M. Arsene, A. Ouensanga, Study of banana and coconut fibersBotanical composition, thermal degradation and textural observations, Bioresour. Technol. 98 (2007) 58–68. https://doi.org/10.1016/j.biortech.2005.11.030.
  • [2] S.K. Samal, S. Mohanty, S.K. Nayak, Banana/glass fiber-reinforced polypropylene hybrid composites: fabrication and performance evaluation, Polym. Plast. Technol. Eng. 48 (2009) 397–414. https://doi.org/10.1080/03602550902725407.
  • [3] W. Jordan, P. Chester, Improving the properties of banana fiber reinforced polymeric composites by treating the fibers, Procedia Eng. 200 (2017) 283–289. https://doi.org/10.1016/j.proeng.2017.07.040.
  • [4] Y.F. Shih, C.C. Huang, Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites, J. Polym. Res. 18 (2011) 2335–2340. https://doi.org/10.1007/s10965-011-9646-y.
  • [5] M.M. Ibrahim, A. Dufresne, W.K. El-Zawawy, F.A. Agblevor, Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites, Carbohydr. Polym. 81 (2010) 811–819. https://doi.org/10.1016/j.carbpol.2010.03.057.
  • [6] S.P. Gairola, Y. Tyagi, B. Gangil, K. Jha, Physio-mechanical & wear performance of banana fiber/walnut powder based epoxy composites, Acta Innov. (2021) 42–55. https://doi.org/10.32933/ActaInnovations.41.4.
  • [7] U.S. Gupta, A. Dharkar, M. Dhamarikar, A. Kumrawat, N. Giri, A.R.S. Chauhan, A. Giri, S. Tiwari, R. Namdeo, Investigation on effects of fiber loading of mechanical properties of banana/sisal hybrid composite, Mater. Today Proc. 45 (2021) 7829–7837. https://doi.org/10.1016/j.matpr.2020.12.213.
  • [8] K.N. Indira, P. Jyotishkumar, S. Thomas, Thermal stability and degradation of banana fibre/PF composites fabricated by RTM, Fibers Polym. 13 (2012) 1319–1325. https://doi.org/10.1007/s12221-012-1319-x.
  • [9] J. Madhukiran, S. Rao, S. Madhusudan, Fabrication and testing of natural fiber reinforced hybrid composites banana/pineapple, Int. J. Mod. Eng. Res. 3 (2013) 2239–2243.
  • [10] S. Dhakal, B.S. Keerthi Gowda, An Experimental Study on Mechanical properties of Banana Polyester Composite, Mater. Today Proc. 4 (2017) 7592–7598. https://doi.org/10.1016/j.matpr.2017.07.092.
  • [11] A. Rathore, M. Pradhan, Hybrid Cellulose Bionanocomposites from banana and jute fibre: A Review of Preparation, Properties and Applications, Mater. Today Proc. 4 (2017) 3942–3951. https://doi.org/10.1016/j.matpr.2017.02.294.
  • [12] L. Yan, N. Chouw, K. Jayaraman, Flax fibre and its composites – A review, Compos. Part B Eng. 56 (2014) 296–317. https://doi.org/10.1016/j.compositesb.2013.08.014.
  • [13] K. Senthilkumar, N. Saba, N. Rajini, M. Chandrasekar, M. Jawaid, S. Siengchin, O.Y. Alotman, Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review, Constr. Build. Mater. 174 (2018) 713–729. https://doi.org/10.1016/j.conbuildmat.2018.04.143.
  • [14] S. Shahinur, M. Hasan, Jute/Coir/banana fiber reinforced bio-composites: critical review of design, fabrication, properties and applications, in: Encycl. Renew. Sustain. Mater., Elsevier, 2020: pp. 751–756. https://doi.org/10.1016/B978-0-12-803581-8.10987-7.
  • [15] N. Amir, K.A.Z. Abidin, F.B.M. Shiri, Effects of fibre configuration on mechanical properties of banana fibre/PP/MAPP natural fibre reinforced polymer composite, Procedia Eng. 184 (2017) 573–580. https://doi.org/10.1016/j.proeng.2017.04.140.
  • [16] M. Ramesh, T.S.A. Atreya, U.S. Aswin, H. Eashwar, C. Deepa, Processing and Mechanical Property Evaluation of Banana Fiber Reinforced Polymer Composites, Procedia Eng. 97 (2014) 563–572. https://doi.org/10.1016/j.proeng.2014.12.284.
  • [17] S.P. Gairola, Y.K. Tyagi, B. Gangil, A. Sharma, Fabrication and mechanical property evaluation of non-woven banana fibre epoxy-based polymer composite, Mater. Today Proc. 44 (2020). https://doi.org/10.1016/j.matpr.2020.10.103.
  • [18] R. Karthick, K. Adithya, C. Hariharaprasath, V. Abhishek, Evaluation of mechanical behavior of banana fibre reinforced hybrid epoxy composites, Mater. Today Proc. 5 (2018) 12814–12820. https://doi.org/10.1016/j.matpr.2018.02.265.
  • [19] M.S. Kumar, S. Dahiya, B. Gangil, L. Ranakoti, N. Agrawal, Mechanical properties of fibre/ filler based poly(Lactic Acid) (Pla) composites : A brief review, Acta Innov. (2021) 5–18. https://doi.org/10.32933/ActaInnovations.41.1.
  • [20] A. Alavudeen, N. Rajini, S. Karthikeyan, M. Thiruchitrambalam, N. Venkateshwaren, Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation, Mater. Des. 66 (2015) 246–257. https://doi.org/10.1016/j.matdes.2014.10.067.
  • [21] I.C. Ezema, A.R.R. Menon, C.S. Obayi, A.D. Omah, Effect of Surface Treatment and Fiber Orientation on the Tensile and Morphological Properties of Banana Stem Fiber Reinforced Natural Rubber Composite, J. Miner. Mater. Charact. Eng. 02 (2014) 216–222. https://doi.org/10.4236/jmmce.2014.23026.
  • [22] M. Chandrasekar, I. Siva, T.S.M. Kumar, K. Senthilkumar, S. Siengchin, N. Rajini, Influence of Fibre Inter-ply Orientation on the Mechanical and Free Vibration Properties of Banana Fibre Reinforced Polyester Composite Laminates, J. Polym. Environ. 28 (2020) 2789–2800. https://doi.org/10.1007/s10924-020-01814-8.
  • [23] P.J. Chavali, G.B. Taru, Effect of Fiber Orientation on Mechanical and Tribological Properties of Banana-Reinforced Composites, J. Fail. Anal. Prev. 21 (2021) 1–8. https://doi.org/10.1007/s11668-020-01048-9.
  • [24] P. Deepak, H. Sivaraman, R. Vimal, S. Badrinarayanan, R. Vignesh Kumar, Study of wear properties of jute/banana fibres reinforced molybdenum disulphide modified epoxy composites, Mater. Today Proc. 4 (2017) 2910–2919. https://doi.org/10.1016/j.matpr.2017.02.172.
  • [25] R. Bhoopathi, M. Ramesh, C. Deepa, Fabrication and property evaluation of banana-hemp-glass fiber reinforced composites, Procedia Eng. 97 (2014) 2032–2041. https://doi.org/10.1016/j.proeng.2014.12.446.
  • [26] H. Liu, Q. Wu, Q. Zhang, Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends, Bioresour. Technol. 100 (2009) 6088–6097. https://doi.org/10.1016/j.biortech.2009.05.076.
  • [27] R. Bhatnagar, G. Gourav, Y. Sachin, A review on composition and properties of banana fibers, Int. J. Sci. Eng. Res. 5 (2015) 49–52.
  • [28] S. Raghavendra, P.B. Shetty, P.G. Mukunda, Mechanical properties of short Banana fiber reinforced natural rubber composites, Int. J. Innov. Res. Sci. Eng. Technol. 2 (2013) 1652–1656.
  • [29] C.-A.T. Asim S., Fulga T., ed., Surface treatment methods of natural fibres and their effects on biocomposites - - 1st Edition, London, 2020.
  • [30] M. Jamil, H. Mahbub, Effect of chemical treatment on the properties of banana fiber reinforced polymer composites, (2021).
  • [31] D.R. Kumar, P. Mohanraj, Review on natural fiber in various pretreatment conditions for preparing perfect fiber, Asian J. Appl. Sci. Technol. 1 (2017) 66–78.
  • [32] C. Elanchezhian, B.V. Ramnath, G. Ramakrishnan, M. Rajendrakumar, V. Naveenkumar, M.K. Saravanakumar, Review on mechanical properties of natural fiber composites., Mater. Today Proc. 5 (2018) 1785–1790. https://doi.org/10.1016/j.matpr.2017.11.276.
  • [33] L.A. Pothan, Z. Oommen, S. Thomas, Dynamic mechanical analysis of banana fiber reinforced polyester composites, Compos. Sci. Technol. 63 (2003) 283–293. https://doi.org/10.1016/S0266-3538(02)00254-3.
  • [34] K.C. Nagaraja, S. Rajanna, G.S. Prakash, G. Rajeshkumar, Mechanical properties of polymer matrix composites: Effect of hybridization, Mater. Today Proc. 34 (2021) 536–538. https://doi.org/10.1016/j.matpr.2020.03.108.
  • [35] Intech Open, Banana Nutrition - Function and Processing Kinetics, IntechOpen, 2020. https://doi.org/10.5772/intechopen.76736.
  • [36] S.C. Ramesh Kumar, H.K. Shivanand, Study on mechanical properties of epoxy based Kenaf/Banana/Glass fiber hybrid nano composites, Mater. Today Proc. 45 (2021) 399–403. https://doi.org/10.1016/j.matpr.2020.12.752.
  • [37] T. Batu, H.G. Lemu, Investigation of mechanical properties of false banana/glass fiber reinforced hybrid composite materials, Results Mater. 8 (2020) 100152. https://doi.org/10.1016/j.rinma.2020.100152.
  • [38] Y.V. Ravi, N. Kapilan, S. Rajole, Y.S. Balaji, N. Varun Kumar Reddy, B.K. Venkatesha, Damage resistance evaluation of E-glass and hybrid hemp-banana natural fiber composite helmet using drop weight impact test, Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.09.213.
  • [39] P.J. Chavali, G.B. Taru, Effect of fiber orientation on mechanical and tribological properties of banana-reinforced composites, J. Fail. Anal. Prev. 21 (2021) 1–8. https://doi.org/10.1007/s11668-020-01048-9.
  • [40] D. Mahesh, K.R. Kowshigha, N. V. Raju, P.K. Aggarwal, Characterization of banana fiber-reinforced polypropylene composites, J. Indian Acad. Wood Sci. 17 (2020) 1–8. https://doi.org/10.1007/s13196-019-00244-x.
  • [41] B. Neher, R. Hossain, K. Fatima, M.A. Gafur, M.A. Hossain, F. Ahmed, Study of the physical, mechanical and thermal properties of banana fiber reinforced HDPE composites, Mater. Sci. Appl. 11 (2020) 245–262. https://doi.org/10.4236/msa.2020.114017.
  • [42] K. Powała, The influence of selected polymers on concrete tightness - current state of knowledge, Acta Innov. (2019) 78–83. https://doi.org/10.32933/ActaInnovations.32.8.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d72638ca-eae7-4ef7-9312-ed04989fa7b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.