Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research is focused on examining the link between the abiotic conditions of coal mine heaps (specifically, the type of spontaneous vegetation) and their respiration rates. The hypothesis is that there is a significant correlation between the carbon content of the soil substrate and the respiration rate of the coal mine heap among the abiotic factors studied. The investigation was carried out on the mineral material found in coal mining heaps, which consisted of Carboniferous mineral rock material. The fieldwork spanned the vegetation seasons from 2018 to 2022. Various physicochemical parameters of the substrate samples were analyzed, including soil organic carbon content, electrical conductivity (EC), pH, total nitrogen (TN), available forms of phosphorus (P2O5 ) content, available magnesium (MgO) concentration, exchangeable cations (K+, Na+), and moisture. Soil respiration measurements were taken using the TARGAZ-1 analyzer. The amount of carbon dioxide released at the sites studied ranged from 0.00158 to 1.21462 [g CO2/m2/h]. It was found that the carbon content and all the environmental factors tested had a significant impact on soil respiration (p=0.001), except total nitrogen (p=0.893). The factors most strongly correlated with soil respiration were potassium (K), alkaline phosphatase, and SRL (soil respiration). Of the taxa analyzed, only the below-ground conditions provided by the vegetation communities dominated by Centaurea stoebe showed a significant correlation with SRL. Three dominant plant species influenced the development of below-ground conditions, leading to negative effects. On the other hand, the below-ground conditions associated with vegetation patches dominated by Daucus carota showed the strongest negative correlation.
Czasopismo
Rocznik
Tom
Strony
239--257
Opis fizyczny
Bibliogr. 139 poz., rys., tab.
Twórcy
autor
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, ul. Jagiellońska 28, 40-032 Katowice, Poland
autor
- Institute of Environmental Protection and Engineering, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
autor
- Mineral and Energy Economy Research Institute, Polish Academy of Sciences, ul. Wybickiego 7a, 31-261 Krakow, Poland
autor
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, ul. Jagiellońska 28, 40-032 Katowice, Poland
Bibliografia
- 1. Aber, J.D., Nadelhoffer, K.J., Steudler, P., Melillo, J.M., 1989. Nitrogen Saturation in Northern Forest EcosystemsExcess nitrogen from fossil fuel combustion may stress the biosphere. Bioscience 39, 378–386. https://doi.org/10.2307/1311067
- 2. Araujo, M.A., Zinn, Y.L., Lal, R., 2017. Soil parent material, texture, and oxide contents have little effect on soil organic carbon retention in tropical highlands. Geoderma 300, 1–10. https://doi.org/10.1016/J.GEODERMA.2017.04.006
- 3. Ardö, J., Olsson, L., 2003. Assessment of soil organic carbon in semi-arid Sudan using GIS and the CENTURY model. J Arid Environ 54, 633–651. https://doi.org/10.1006/JARE.2002.1105
- 4. Arevalo, C.B.M., Bhatti, J.S., Chang, S.X., Jassal, R.S., Sidders, D., 2010. Soil respiration in four different land use systems in north central Alberta, Canada. J Geophys Res Biogeosci 115, 1003. https://doi.org/10.1029/2009JG001006
- 5. Atkin, O.K., Tjoelker, M.G., 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8, 343–351. https://doi.org/10.1016/S1360-1385(03)00136-5
- 6. Baral, H., Guariguata, M.R., Keenan, R.J., 2016. A proposed framework for assessing ecosystem goods and services from planted forests. Ecosyst Serv 22, 260–268. https://doi.org/10.1016/J.ECOSER.2016.10.002
- 7. Bardgett, R., 2005. The Biology of Soil: A community and ecosystem approach. The Biology of Soil: A community and ecosystem approach 1–256. https://doi.org/10.1093/ACPROF:O SO/9780198525035.001.0001
- 8. Bark, R.H., Colloff, M.J., Hatton MacDonald, D., Pollino, C.A., Jackson, S., Crossman, N.D., 2016. Integrated valuation of ecosystem services obtained from restoring water to the environment in a major regulated river basin. Ecosyst Serv 22, 381–391. https://doi.org/10.1016/J.ECOSER.2016.08.002
- 9. Beltrán, J., Manzur, C., 2005. Overview of salinity problems in the world and FAO strategies to address the problem.
- 10. Bierza, W., Woźniak, G., Kompała-Bąba, A., Magurno, F., Malicka, M., Chmura, D., Błońska, A., Jagodziński, A.M., Piotrowska-Seget, Z., Bierza, W., Woźniak, G., Kompała-Bąba, A., Magurno, F., Malicka, M., Chmura, D., Błońska, A., Jagodziński, A.M., Piotrowska-Seget, Z., 2023. The Effect of Plant Diversity and Soil Properties on Soil Microbial Biomass and Activity in a Novel Ecosystem. Sustainability 15, 1–18.
- 11. Binkley, D., Burnham, H., Lee Allen, H., 1999. Water quality impacts of forest fertilization with nitrogen and phosphorus. For Ecol Manage 121, 191–213. https://doi.org/10.1016/S0378-1127(98)00549-0
- 12. Bolan, N.S., 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134, 189–207. https://doi.org/10.1007/BF00012037/METRICS
- 13. Bond-Lamberty, B., Thomson, A., 2010. Temperature-associated increases in the global soil respiration record. Nature 464:7288 464, 579–582. https://doi.org/10.1038/nature08930
- 14. Bond-Lamberty, B., Wang, C., Gower, S.T., 2004. Contribution of root respiration to soil surface CO2 f lux in a boreal black spruce chronosequence. Tree Physiol 24, 1387–1395. https://doi.org/10.1093/TREEPHYS/24.12.1387
- 15. Borken, W., Davidson, E.A., Savage, K., Gaudinski, J., Trumbore, S.E., 2003. Drying and Wetting Effects on Carbon Dioxide Release from Organic Horizons. Soil Science Society of America Journal 67, 18881896. https://doi.org/10.2136/SSSAJ2003.1888
- 16. Borken, W., Xu, Y.-J., Brumme, R., Lamersdorf, N., Borken, W., Xu, Y.-J., Brumme, R., Lamersdorf, N., 1999. A Climate Change Scenario for Carbon Dioxide and Dissolved Organic Carbon Fluxes from a Temperate Forest Soil. SSASJ 63, 1848. https://doi.org/10.2136/SSSAJ1999.6361848X
- 17. Bossio, D., Critchley, W., Geheb, K., Lynden, G.W.J. van, Mati, B., Udas, P.B., Hellin, J., Jacks, G., Kolff, A., Nachtergaele, F., Neely, C., Peden, D., Rubiano, J., Shepherd, G., Valentin, C., Walsh, M., 2007. Conserving land : protecting water.
- 18. Bouma, T., Broekhuysen, A., Veen, B.W., 1996. Analysis of root respiration of Solanum tuberosum as related to growth, ion uptake and maintenance of biomass. Plant Physiology and Biochemistry.
- 19. Bouma, T.J., Bryla, D.R., 2000. On the assessment of root and soil respiration for soils of different textures: Interactions with soil moisture contents and soil CO2 concentrations. Plant Soil 227, 215–221. https://doi.org/10.1023/A:1026502414977/METRICS
- 20. Bouma, T.J., Nielsen, K.L., Eissenstat, D.M., Lynch, J.P., 1997a. Soil CO2 concentration does not affect growth or root respiration in bean or citrus. Plant Cell Environ 20, 1495–1505. https://doi.org/10.1046/J.1365-3040.1997.D01-52.X
- 21. Bouma, T.J., Nielsen, K.L., Eissenstat, D.M., Lynch, J.P., 1997b. Estimating respiration of roots in soil: Interactions with soil CO2 , soil temperature and soil water content. Plant Soil 195, 221–232. https://doi.org/10.1023/A:1004278421334/METRICS
- 22. Boyce, R.L., 1998. Fuzzy set ordination along an elevation gradient on a mountain in Vermont, USA. Journal of Vegetation Science 9, 191–200. https://doi.org/10.2307/3237118
- 23. Burton, A.J., Zogg, G.P., Pregitzer, K.S., Zak, D.R., 1997. Effect of measurement CO2 concentration on sugar maple root respiration. Tree Physiol 17, 421427. https://doi.org/10.1093/TREEPHYS/17.7.421
- 24. Butler, A., Hur, B., Junior, M., Maracahipes, L., Schwantes Marimon, B., Silvério, V., Almeida De Oliveira, E., Lenza, E., Feldpausch, T.R., Meir, P., Grace, J., n.d. Absorbing roots areas and transpiring leaf areas at the tropical forest and savanna boundary in Brazil.
- 25. Chen, B., Liu, S., Ge, J., Chu, J., 2010. Annual and seasonal variations of Q10 soil respiration in the sub-alpine forests of the Eastern Qinghai-Tibet Plateau, China. Soil Biol Biochem 42, 1735–1742. https://doi.org/10.1016/J.SOILBIO.2010.06.010
- 26. Chen, X., Chen, H.Y.H., 2019. Plant diversity loss reduces soil respiration across terrestrial ecosystems. Glob Chang Biol 25, 1482–1492. https://doi.org/10.1111/GCB.14567
- 27. Côté, L., Brown, S., Paré, D., Fyles, J., Bauhus, J., 2000. Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixedwood. Soil Biol Biochem 32, 1079–1090. https://doi.org/10.1016/S0038-0717(00)00017-1
- 28. Cusack, D.F., Silver, W.L., Torn, M.S., Burton, S.D., Firestone, M.K., 2011. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 92, 621–632. https://doi.org/10.1890/10-0459.1
- 29. Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006 440:7081 440, 165–173. https://doi.org/10.1038/nature04514
- 30. De Groot, C.C., Marcelis, L.F.M., Van Den Boogaard, R., Lambers, H., 2001. Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light. Plant Cell Environ 24, 1309–1317. https://doi.org/10.1046/J.0016-8025.2001.00788.X
- 31. Dugas, W.A., 1993. Micrometeorological and chamber measurements of CO2 flux from bare soil. Agric For Meteorol 67, 115–128. https://doi.org/10.1016/0168-1923(93)90053-K
- 32. Dugas, W.A., Reicosky, D.C., Kiniry, J.R., 1997. Chamber and micrometeorological measurements of CO2 and H2 O fluxes for three C4 grasses. Agric For Meteorol 83, 113–133. https://doi.org/10.1016/ S0168-1923(96)02346-5
- 33. Eberwein, J., Shen, W., Jenerette, G.D., 2017. Michaelis-Menten kinetics of soil respiration feedbacks to nitrogen deposition and climate change in subtropical forests. Scientific Reports 7:1 7, 1–9. https://doi.org/10.1038/s41598-017-01941-8
- 34. Epron, D., Farque, L., Lucot, E., Badot, P.M., 1999. Soil CO2 efflux in a beech forest: The contribution of root respiration. Ann For Sci 56, 289–295. https://doi.org/10.1051/FOREST:19990403
- 35. Fahey, T.J., Yavitt, J.B., Sherman, R.E., Maerz, J.C., Groffman, P.M., Fisk, M.C., Bohlen, P.J., 2013. Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest. Ecol Appl 23, 1185–1201. https://doi.org/10.1890/12-1760.1
- 36. Fenn, K.M., Malhi, Y., Morecroft, M.D., 2010. Soil CO2 efflux in a temperate deciduous forest: Environmental drivers and component contributions. Soil Biol Biochem 42, 1685–1693. https://doi.org/10.1016/J.SOILBIO.2010.05.028
- 37. Franzluebbers, A.J., Haney, R.L., Honeycutt, C.W., Arshad, M.A., Schomberg, H.H., Hons, F.M., 2001. Climatic influences on active fractions of soil organic matter. Soil Biol Biochem 33, 1103–1111. https://doi.org/10.1016/S0038-0717(01)00016-5
- 38. Frouz, J., 2018. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332, 161–172. https://doi.org/10.1016/J.GEODERMA.2017.08.039
- 39. Futa, B., Mocek-Płóciniak, A., 2016. The influence of uncontrolled grass burning on biochemical qualities of soil. Journal of Research and Applications in Agricultural Engineering.
- 40. Woźniak G., 2010. Zróżnicowanie roślinności na zwałach pogórniczych Górnego Śląska. Wydawnictwo Naukowe Scholar - Instytut Socjologii UW.
- 41. Gauch, H.G., 1982. Introduction. Multivariate Analysis in Community Ecology 1–42. https://doi.org/10.1017/CBO9780511623332.002
- 42. Giardina, C.P., Ryan, M.G., Hubbard, R.M., Binkley, D., n.d. Tree Species and Soil Textural Controls on Carbon and Nitrogen Mineralization Rates.
- 43. Grant, R.F., Juma, N.G., Robertson, J.A., Izaurralde, R.C., McGill, W.B., Grant, R.F., Juma, N.G., Robertson, J.A., Izaurralde, R.C., McGill, W.B., 2001. Long-Term Changes in Soil Carbon under Different Fertilizer, Manure, and Rotation. SSASJ 65, 205. https://doi.org/10.2136/SSSAJ2001.651205X
- 44. Hanson, P.J., Edwards, N.T., Garten, C.T., Andrews, J.A., 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48, 115–146. https://doi.org/10.1023/A:1006244819642/METRICS
- 45. Heinemeyer, A., Hartley, I.P., Evans, S.P., Carreira De La Fuente, J.A., Ineson, P., 2007. Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Glob Chang Biol 13, 1786–1797. https://doi.org/10.1111/J.1365-2486.2007.01383.X
- 46. Helfenstein, J., Pistocchi, C., Oberson, A., Tamburini, F., Goll, D.S., Frossard, E., 2020. Estimates of mean residence times of phosphorus in commonly considered inorganic soil phosphorus pools. Biogeosciences 17, 441–454. https://doi.org/10.5194/BG-17-441-2020
- 47. Helfenstein, J., Tamburini, F., von Sperber, C., Massey, M.S., Pistocchi, C., Chadwick, O.A., Vitousek, P.M., Kretzschmar, R., Frossard, E., 2018. Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nature Communications 9:1 9, 1–9. https://doi.org/10.1038/s41467-018-05731-2
- 48. Helingerová, M., Frouz, J., Šantrůčková, H., 2010. Microbial activity in reclaimed and unreclaimed post-mining sites near Sokolov (Czech Republic). Ecol Eng 36, 768–776. https://doi.org/10.1016/J.ECOLENG.2010.01.007
- 49. Hobbs, R.J., Arico, S., Aronson, J., Baron, J.S., Bridgewater, P., Cramer, V.A., Epstein, P.R., Ewel, J.J., Klink, C.A., Lugo, A.E., Norton, D., Ojima, D., Richardson, D.M., Sanderson, E.W., Valladares, F., Vilà, M., Zamora, R., Zobel, M., 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography 15, 1–7. https://doi.org/10.1111/J.1466-822X.2006.00212.X
- 50. Homeier, J., Báez, S., Hertel, D., Leuschner, C., 2017. Editorial: Tropical forest ecosystem responses to increasing nutrient availability. Front Earth Sci (Lausanne) 5, 255840. https://doi.org/10.3389/FEART.2017.00027/BIBTEX
- 51. Ilstedt, U., Nordgren, A., Malmer, A., 2000. Optimum soil water for soil respiration before and after amendment with glucose in humid tropical acrisols and a boreal mor layer. Soil Biol Biochem 32, 1591–1599. https://doi.org/10.1016/S0038-0717(00)00073-0
- 52. Jarvis, A., Lane, A., Hijmans, R.J., 2008. The effect of climate change on crop wild relatives. Agric Ecosyst Environ 126, 13–23. https://doi.org/10.1016/j.agee.2008.01.013
- 53. Jenkinson, D.S., 1990. The turnover of organic carbon and nitrogen in soil. Philos Trans R Soc Lond B Biol Sci 329, 361–368. https://doi.org/10.1098/RSTB.1990.0177
- 54. Jiang, L., Ma, S., Zhou, Z., Zheng, T., Jiang, X., Cai, Q., Li, P., Zhu, J., Li, Y., Fang, J., 2017. Soil respiration and its partitioning in different components in tropical primary and secondary mountain rain forests in Hainan Island, China. Journal of Plant Ecology 10, 791–799. https://doi.org/10.1093/JPE/RTW080
- 55. Joon Kim, Verma, S.B., Clement, R.J., 1992. Carbon dioxide budget in a temperate grassland ecosystem. Journal of Geophysical Research: Atmospheres 97, 6057–6063. https://doi.org/10.1029/92JD00186
- 56. Keith, S.A., Newton, A.C., Herbert, R.J.H., Morecroft, M.D., Bealey, C.E., 2009. Non-analogous community formation in response to climate change. J Nat Conserv 17, 228–235. https://doi.org/10.1016/J.JNC.2009.04.003
- 57. Kelting, D.L., Burger, J.A., Edwards, G.S., 1998. Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil Biol Biochem 30, 961–968. https://doi.org/10.1016/S0038-0717(97)00186-7
- 58. Koizumi, H., Nakadai, T., Usami, Y., Satoh, M., Shiyomi, M., Oikawa, T., 1991. Effect of carbon dioxide concentration on microbial respiration in soil. Ecol Res 6, 227–232. https://doi.org/10.1007/BF02347124
- 59. Kooijman, A., Welschen, R., Lambers, H., 1988. Respiratory energy costs for the maintenance of biomass, for growth and for ion uptake in roots of Carex diandra and Carex acutiformis. Physiol Plant 72, 483–491. https://doi.org/10.1111/J.1399-3054.1988.TB09155.X
- 60. Kowarik, I., Fischer, L.K., Säumel, I., von der Lippe, M., Weber, F., Westermann, J.R., 2011. Plants in Urban Settings: From Patterns to Mechanisms and Ecosystem Services. Perspectives in Urban Ecology 135–166. https://doi.org/10.1007/978-3-642-17731-6_5
- 61. Kutsch, W.L., Staack, A., Wötzel, J., Middelhoff, U., Kappen, L., 2001. Field measurements of root respiration and total soil respiration in an alder forest. New Phytologist 150, 157–168. https://doi.org/10.1046/J.1469-8137.2001.00071.X
- 62. Lambers, H., Atkin, O., Millenaar, F., 2002. Respiratory Patterns in Roots in Relation to Their Functioning. Plant Roots 521–552. https://doi.org/10.1201/9780203909423.PT6
- 63. Lamošová, T., Doležal, J., Lanta, V., Lepš, J., 2010. Spatial pattern affects diversity–productivity relationships in experimental meadow communities. Acta Oecologica 36, 325–332. https://doi.org/10.1016/J.ACTAO.2010.02.005
- 64. Le Quéré, C., Moriarty, R., Andrew, R.M., Peters, G.P., Ciais, P., Friedlingstein, P., Jones, S.D., Sitch, S., Tans, P., Arneth, A., Boden, T.A., Bopp, L., Bozec, Y., Canadell, J.G., Chini, L.P., Chevallier, F., Cosca, C.E., Harris, I., Hoppema, M., Houghton, R.A., House, J.I., Jain, A.K., Johannessen, T., Kato, E., Keeling, R.F., Kitidis, V., Klein Goldewijk, K., Koven, C., Landa, C.S., Landschützer, P., Lenton, A., Lima, I.D., Marland, G., Mathis, J.T., Metzl, N., Nojiri, Y., Olsen, A., Ono, T., Peng, S., Peters, W., Pfeil, B., Poulter, B., Raupach, M.R., Regnier, P., Rödenbeck, C., Saito, S., Salisbury, J.E., Schuster, U., Schwinger, J., Séférian, R., Segschneider, J., Steinhoff, T., Stocker, B.D., Sutton, A.J., Takahashi, T., Tilbrook, B., Van Der Werf, G.R., Viovy, N., Wang, Y.P., Wanninkhof, R., Wiltshire, A., Zeng, N., 2015. Global carbon budget 2014. Earth Syst Sci Data 7, 47–85. https://doi.org/10.5194/ESSD-7-47-2015
- 65. Legendre, P., Legendre, L., 2012. Numerical Ecology Ch 6 - Multidimensional qualitative data. Developments in Environmental Modelling 24, 337–424.
- 66. Linn, D.M., Doran, J.W., 1984. Effect of WaterFilled Pore Space on Carbon Dioxide and Nitrous Oxide Production in Tilled and Nontilled Soils. Soil Science Society of America Journal 48, 1267–1272. https://doi.org/10.2136/ SSSAJ1984.03615995004800060013X
- 67. Liu, J., Jiang, P., Wang, H., Zhou, G., Wu, J., Yang, F., Qian, X., 2011. Seasonal soil CO2 efflux dynamics after land use change from a natural forest to Moso bamboo plantations in subtropical China. For Ecol Manage 262, 1131–1137. https://doi.org/10.1016/J.FORECO.2011.06.015
- 68. Lucas, R.W., Klaminder, J., Futter, M.N., Bishop, K.H., Egnell, G., Laudon, H., Högberg, P., 2011. A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. For Ecol Manage 262, 95–104. https://doi.org/10.1016/J.FORECO.2011.03.018
- 69. Luo, Y., Zhou, X., 2006. Soil Respiration and the Environment. Soil Respiration and the Environment 1–316. https://doi.org/10.1016/B978-0-12-088782-8.X5000-1
- 70. Małek, S., 2009. Sustainability of Picea abies of Istebna provenance in Dupniański Stream catchment as dependent on stand age class. Dendrobiology.
- 71. Mao, Q., Lu, X., Zhou, K., Chen, H., Zhu, X., Mori, T., Mo, J., 2017. Effects of long-term nitrogen and phosphorus additions on soil acidification in an Nrich tropical forest. Geoderma 285, 57–63. https://doi.org/10.1016/J.GEODERMA.2016.09.017
- 72. McLauchlan, K.K., 2006. Effects of soil texture on soil carbon and nitrogen dynamics after cessation of agriculture. Geoderma 136, 289–299. https://doi.org/10.1016/J.GEODERMA.2006.03.053
- 73. Mielke, L.N., Doran, J.W., Richards, K.A., 1986. Physical environment near the surface of plowed and no-tilled soils. Soil Tillage Res 7, 355–366. https://doi.org/10.1016/0167-1987(86)90022-X
- 74. Mittler, R., 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci 11, 15–19. https://doi.org/10.1016/J.TPLANTS.2005.11.002
- 75. Mo, J., Zhang, W., Zhu, W., Gundersn, P., Fang, Y., Li, D., Wang, H., 2008. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob Chang Biol 14, 403–412. https://doi.org/10.1111/J.1365-2486.2007.01503.X
- 76. Moyano, F.E., Kutsch, W.L., Rebmann, C., 2008. Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agric For Meteorol 148, 135–143. https://doi.org/10.1016/J.AGRFORMET.2007.09.006
- 77. Moyano, F.E., Kutsch, W.L., Schulze, E.D., 2007. Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field. Soil Biol Biochem 39, 843–853. https://doi.org/10.1016/J.SOILBIO.2006.10.001
- 78. Müller, T., Höper, H., 2004. Soil organic matter turnover as a function of the soil clay content: consequences for model applications. Soil Biol Biochem 36, 877–888. https://doi.org/10.1016/J.SOILBIO.2003.12.015
- 79. Nobel, P.S., Palta, J.A., 1989. Soil O2 and CO2 effects on root respiration of cacti. Plant Soil 120, 263–271. https://doi.org/10.1007/BF02377076/METRICS
- 80. Norman, J.M., Garcia, R., Verma, S.B., 1992. Soil surface CO2 fluxes and the carbon budget of a grassland. Journal of Geophysical Research: Atmospheres 97, 18845–18853. https://doi.org/10.1029/92JD01348
- 81. Orwin, K.H., Ostle, N., Wilby, A., Bardgett, R.D., 2014. Effects of species evenness and dominant species identity on multiple ecosystem functions in model grassland communities. Oecologia 174, 979–992. https://doi.org/10.1007/S00442-013-2814-5/METRICS
- 82. Palta, J.A., Nobel, P.S., 1989. Influence of soil O2 and CO2 on root respiration for Agave deserti. Physiol Plant 76, 187–192. https://doi.org/10.1111/J.1399-3054.1989.TB05630.X
- 83. Pannell, D.J., Ewing, M.A., 2006. Managing secondary dryland salinity: Options and challenges. Agric Water Manag 80, 41–56. https://doi.org/10.1016/J.AGWAT.2005.07.003
- 84. Parton, W.J., Schimel, D.S., Cole, C. V., Ojima, D.S., 1987. Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands. Soil Science Society of America Journal 51, 1173–1179. https://doi.org/10.2136/SSSAJ1987.03615995005100050015X
- 85. Qi, J., Marshall, J.D., Mattson, K.G., 1994. High soil carbon dioxide concentrations inhibit root respiration of Douglas fir. New Phytologist 128, 435–442. https://doi.org/10.1111/J.1469-8137.1994.TB02989.X
- 86. Radosz, Ł., Chmura, D., Prostański, D., Woźniak, G. 2023. The Soil Respiration of Coal Mine Heaps’ Novel Ecosystems in Relation to Biomass and Biotic Parameters. Energies, 16(20), 7083.
- 87. Radosz, Ł., Ryś, K., Chmura, D., Hutniczak, A., Woźniak, G., Botaniki, K., Przyrody, O., Biologii, W., Środowiska, O., 2019. Rola fauny glebowej w zróżnicowaniu roślinności na zwałowisku karbońskiej skały płonnej. Inżynieria Ekologiczna 20, 21–28. https://doi.org/10.12912/23920629/113635
- 88. Ramos, F.T., Dores, E.F. de C., Weber, O.L. dos S., Beber, D.C., Campelo, J.H., Maia, J.C. de S., 2018. Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil. J Sci Food Agric 98, 3595–3602. https://doi.org/10.1002/JSFA.8881
- 89. Rawlik, M., Kasprowicz, M., Jagodziński, A.M., 2018a. Differentiation of herb layer vascular flora in reclaimed areas depends on the species composition of forest stands. For Ecol Manage 409, 541–551. https://doi.org/10.1016/J.FORECO.2017.11.055
- 90. Rawlik, M., Kasprowicz, M., Jagodziński, A.M., Kaźmierowski, C., Łukowiak, R., Grzebisz, W., 2018b. Canopy tree species determine herb layer biomass and species composition on a reclaimed mine spoil heap. Science of The Total Environment 635, 1205–1214. https://doi.org/10.1016/J.SCITOTENV.2018.04.133
- 91. Rengasamy, P., 2006. World salinization with emphasis on Australia. J Exp Bot 57, 1017–1023. https://doi.org/10.1093/JXB/ERJ108
- 92. Reth, S., Reichstein, M., Falge, E., 2005. The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux - A modified model. Plant Soil 268, 21–33. https://doi.org/10.1007/S11104-005-0175-5/METRICS
- 93. Rhoades, C.C., 1996. Single-tree influences on soil properties in agroforestry: Lessons from natural forest and savanna ecosystems. Agroforestry Systems 35, 7194. https://doi.org/10.1007/BF02345330/METRICS
- 94. Roberts, D.W., 2009. Comparison of multidimensional fuzzy set ordination with CCA and DB-RDA. Ecology 90, 2622–2634. https://doi.org/10.1890/07-1673.1
- 95. Roberts, D.W., 2008. Statistical analysis of multidimensional fuzzy set ordinations. Ecology 89, 1246–1260. https://doi.org/10.1890/07-0136.1
- 96. Roberts, D.W., 1986. Ordination on the basis of fuzzy set theory. Vegetatio 66, 123–132. https://doi.org/10.1007/BF00039905
- 97. Rochette, P., Angers, D.A., Chantigny, M.H., Gasser, M.O., MacDonald, J.D., Pelster, D.E., Bertrand, N., 2013. NH3 volatilization, soil NH4+concentration and soil pH following subsurface banding of urea at increasing rates. Can J Soil Sci 93, 261–268. https://doi.org/10.4141/CJSS2012-095
- 98. Rodeghiero, M., Cescatti, A., 2006. Indirect partitioning of soil respiration in a series of evergreen forest ecosystems. Plant Soil 284, 7–22. https://doi.org/10.1007/S11104-005-5109-8/METRICS
- 99. Rodeghiero, M., Cescatti, A., 2005. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Glob Chang Biol 11, 1024–1041. https://doi.org/10.1111/J.1365-2486.2005.00963.X
- 100. Rosling, A., Midgley, M.G., Cheeke, T., Urbina, H., Fransson, P., Phillips, R.P., 2016. Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees. New Phytologist 209, 1184–1195. https://doi.org/10.1111/NPH.13720
- 101. Satomura, T., Hashimoto, Y., Koizumi, H., Nakane, K., Horikoshi, T., 2006. Seasonal patterns of fine root demography in a cool-temperate deciduous forest in central Japan. Ecol Res 21, 741–753. https://doi.org/10.1007/S11284-006-0182-X/METRICS
- 102. Savage, K.E., Davidson, E.A., 2003. A comparison of manual and automated systems for soil CO2 flux measurements: trade-offs between spatial and temporal resolution. J Exp Bot 54, 891–899. https://doi.org/10.1093/JXB/ERG121
- 103. Scheurwater, I., Cornelissen, C., Dictus, F., Welschen, R., Lambers, H., 1998. Why do fast- and slow-growing grass species differ so little in their rate of root respiration, considering the large differences in rate of growth and ion uptake? Plant Cell Environ 21, 995–1005. https://doi.org/10.1046/J.1365-3040.1998.00341.X
- 104. Schimel, D.S., 1995. Terrestrial ecosystems and the carbon cycle. Glob Chang Biol 1, 77–91. https://doi.org/10.1111/J.1365-2486.1995.TB00008.X
- 105. Schlentner, R.E., Van Cleve, K., 1985. Relationships between CO2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Canadian Journal of Forest Research 15, 97–106. https://doi.org/10.1139/X85-018
- 106. Scott-Denton, L.E., Rosenstiel, T.N., Monson, R.K., 2006. Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Glob Chang Biol 12, 205–216. https://doi.org/10.1111/J.1365-2486.2005.01064.X
- 107. Šimůnek, J., Suarez, D.L., 1993. Modeling of carbon dioxide transport and production in soil: 1. Model development. Water Resour Res 29, 487–497. https://doi.org/10.1029/92WR02225
- 108. Singer, M.J. (Michael J., Munns, D.N. (Donald N., 1991. Soils, an introduction 473.
- 109. Singh, J.S., Gupta, S.R., 1977. Plant decomposition and soil respiration in terrestrial ecosystems. The Botanical Review 43:4 43, 449–528. https://doi.org/10.1007/BF02860844
- 110. Sinsabaugh, R.L., Gallo, M.E., Lauber, C., Waldrop, M.P., Zak, D.R., 2005. Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75, 201215. https://doi.org/10.1007/S10533-004-7112-1/METRICS
- 111. Sitaula, B.K., Bakken, L.R., Abrahamsen, G., 1995. N-fertilization and soil acidification effects on N2 O and CO2 emission from temperate pine forest soil. Soil Biol Biochem 27, 1401–1408. https://doi.org/10.1016/0038-0717(95)00078-S
- 112. Six, J., Elliott, E.T., Paustian, K., 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32, 2099–2103. https://doi.org/10.1016/S0038-0717(00)00179-6
- 113. Skopp, J., Jawson, M.D., Doran, J.W., 1990. SteadyState Aerobic Microbial Activity as a Function of Soil Water Content. Soil Science Society of America Journal 54, 1619–1625. https://doi.org/10.2136/SSSAJ1990.03615995005400060018X
- 114. Stefanowicz, A.M., Kapusta, P., Błońska, A., Kompała-Baba, A., Woźniak, G., 2015. Effects of Calamagrostis epigejos, Chamaenerion palustre and Tussilago farfara on nutrient availability and microbial activity in the surface layer of spoil heaps after hard coal mining. Ecol Eng 83, 328–337. https://doi.org/10.1016/J.ECOLENG.2015.06.034
- 115. Stöcker, G., Digby, P.G.N., Kempton, R.A. 1990. Multivariate Analysis of Ecological Communities. Chapman and Hall, London - New York 1987, VIII, 206 S., £25,-. Biometrical Journal 32, 94. https://doi.org/10.1002/BIMJ.4710320115
- 116. Subke, J.A., Inglima, I., Cotrufo, M.F., 2006. Trends and methodological impacts in soil CO2 efflux partitioning: A metaanalytical review. Glob Chang Biol 12, 921–943. https://doi.org/10.1111/J.1365-2486.2006.01117.X
- 117. Tang, J., Qi, Y., Xu, M., Misson, L., Goldstein, A.H., 2005. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada. Tree Physiol 25, 57–66. https://doi.org/10.1093/ TREEPHYS/25.1.57
- 118. Ter Braak, C.J.F., 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69, 69–77. https://doi.org/10.1007/BF00038688/METRICS
- 119. ter Braak, C.J.F., Verdonschot, P.F.M., 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57, 255–289. https://doi.org/10.1007/BF00877430/METRICS
- 120. Tisdall, J.M., Oades, J.M., 1982. Organic matter and water-stable aggregates in soils. Journal of Soil Science 33, 141–163. https://doi.org/10.1111/J.1365-2389.1982.TB01755.X
- 121. Tüfekçioğlu, A., Küçük, M., 2004. Soil Respiration in Young and Old Oriental Spruce Stands and in Adjacent Grasslands in Artvin, Turkey. Turkish Journal of Agriculture and Forestry.
- 122. Vose, J.M., Ryan, M.G., 2002. Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis. Global Change Biology. 8, 182–193.
- 123. Wang, W.J., Dalal, R.C., Moody, P.W., Smith, C.J., 2003. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol Biochem 35, 273–284. https://doi.org/10.1016/S0038-0717(02)00274-2
- 124. Wang, W.W., Jiang, X., Zheng, B.H., Chen, J.Y., Zhao, L., Zhang, B., Wang, S.H., 2018. Composition, mineralization potential and release risk of nitrogen in the sediments of Keluke Lake, a Tibetan Plateau freshwater lake in China. R Soc Open Sci 5. https://doi.org/10.1098/RSOS.180612
- 125. Wang, Y., Hu, Y., Ji, B., Liu, G., Xue, M., 2003. An investigation on the relationship between emission/ uptake of greenhouse gases and environmental factors in semiarid grassland. Adv Atmos Sci 20, 119–127. https://doi.org/10.1007/BF03342056/METRICS
- 126. Washbourne, C.L., Goddard, M.A., Le Provost, G., Manning, D.A.C., Manning, P., 2020. Tradeoffs and synergies in the ecosystem service demand of urban brownfield stakeholders. Ecosyst Serv 42, 101074. https://doi.org/10.1016/J.ECOSER.2020.101074
- 127. Wolińska, A., 2019. Metagenomic Achievements in Microbial Diversity Determination in Croplands: A Review. Microbial Diversity in the Genomic Era 15–35. https://doi.org/10.1016/B978-0-12-814849-5.00002-2
- 128. Wolińska, A., Stępniewska, Z., Bielecka, A., Ciepielski, J., 2014. Bioelectricity production from soil using microbial fuel cells. Appl Biochem Biotechnol 173, 2287–2296. https://doi.org/10.1007/S12010-014-1034-8
- 129. Xiao, H.B., Shi, Z.H., Li, Z.W., Chen, J., Huang, B., Yue, Z.J., Zhan, Y.M., 2021. The regulatory effects of biotic and abiotic factors on soil respiration under different land-use types. Ecol Indic 127, 107787. https://doi.org/10.1016/J.ECOLIND.2021.107787
- 130. Yakov Kuzyakov, 2004. Ecology of Rhizosphere Bioremediation. Phytoremediation 317–353. https://doi.org/10.1002/047127304X.CH10
- 131. Yang, K., Zhu, J., Gu, J., Yu, L., Wang, Z., 2015. Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation. Ann For Sci 72, 435–442. https://doi.org/10.1007/S13595-014-0444-7
- 132. Yu, L., Wang, Yujie, Wang, Yunqi, Sun, S., Liu, L., 2015. Quantifying components of soil respiration and their response to abiotic factors in two typical subtropical forest stands, southwest China. PLoS One 10. https://doi.org/10.1371/JOURNAL.PONE.0117490
- 133. Zaharescu, D.G., Palanca-Soler, A., Hooda, P.S., Tanase, C., Burghelea, C.I., Lester, R.N., 2017. Riparian vegetation in the alpine connectome: Terrestrial-aquatic and terrestrial-terrestrial interactions. ScTEn 601–602, 247–259. https://doi.org/10.1016/J.SCITOTENV.2017.05.135
- 134. Zalasiewicz, J., Waters, C.N., Ivar do Sul, J.A., Corcoran, P.L., Barnosky, A.D., Cearreta, A., Edgeworth, M., Gałuszka, A., Jeandel, C., Leinfelder, R., McNeill, J.R., Steffen, W., Summerhayes, C., Wagreich, M., Williams, M., Wolfe, A.P., Yonan, Y., 2016. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene 13, 4–17. https://doi.org/10.1016/J.ANCENE.2016.01.002
- 135. Zarif, N., Khan, A., Wang, Q., 2020. Linking soil acidity to p fractions and exchangeable base cations under increased n and p fertilization of mono and mixed plantations in Northeast China. Forests 11, 1–19. https://doi.org/10.3390/F11121274
- 136. Zhang, F.G., Zhang, Q.G., 2016. Microbial diversity limits soil heterotrophic respiration and mitigates the respiration response to moisture increase. Soil Biol Biochem 98, 180–185. https://doi.org/10.1016/J.SOILBIO.2016.04.017
- 137. Zhang, H., Shi, L., Fu, S., 2020. Effects of nitrogen deposition and increased precipitation on soil phosphorus dynamics in a temperate forest. Geoderma 380, 114650. https://doi.org/10.1016/J.GEODERMA.2020.114650
- 138. Zhang, T., Li, Y., Chang, S.X., Jiang, P., Zhou, G., Zhang, J., Liu, J., 2013. Responses of seasonal and diurnal soil CO2 effluxes to land-use change from paddy fields to Lei bamboo (Phyllostachys praecox) stands. Atmos Environ 77, 856–864. https://doi.org/10.1016/J.ATMOSENV.2013.06.011
- 139. Zheng, Z.M., Yu, G.R., Fu, Y.L., Wang, Y.S., Sun, X.M., Wang, Y.H., 2009. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: A trans-China based case study. Soil Biol Biochem 41, 1531–1540. https://doi.org/10.1016/J.SOILBIO.2009.04.013
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d722a65a-38fc-4815-8eb7-bfee334d8645
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.