PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

J-PET application as a Compton camera for proton beam range verification: A preliminary study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hybrid in-beam PET/Compton camera imaging currently shows a promising approach to use of the quasi-real-time range verification technique in proton therapy. This work aims to assess the capability of utilizing a configuration of the Jagiellonian-positron emission tomography (J-PET) scanner made of plastic scintillator strips, so as to serve as a Compton camera for proton beam range verification. This work reports the production yield results obtained from the GATE/Geant4 simulations, focusing on an energy spectrum (4.2-4.6) MeV of prompt gamma (PG) produced from a clinical proton beam impinging on a water phantom. To investigate the feasibility of J-PET as a Compton camera, a geometrical optimisation was performed. This optimisation was conducted by a point spread function (PSF) study of an isotropic 4.44 MeV gamma source. Realistic statistics of 4.44 MeV PGs obtained from the prior step were employed, simulating interactions with the detector. A sufficient number of detected photons was obtained for the source position reconstruction after performing a geometry optimisation for the proposed J-PET detector. Furthermore, it was demonstrated that more precise calculation of the total deposited energy of coincident events plays a key role in improving the image quality of source distribution determination. A reasonable spatial resolution of 6.5 mm FWHM along the actual proton beam direction was achieved for the first imaging tests. This preliminary study has shown notable potential in using the J-PET application for in-beam PET/Compton camera imaging at quasi-real-time proton range monitoring in future clinical use.
Rocznik
Strony
23--30
Opis fizyczny
Bibliogr. 64 poz., rys.
Twórcy
autor
  • Department of Radiology, University of Pennsylvania, Philadelphia, USA
  • Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
  • Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
autor
  • Center for Theranostics, Jagiellonian University, Krakow, Poland
Bibliografia
  • 1. Wilson RR. Radiological use of fast protons. Radiology. 1946;47:487-91.
  • 2. Knopf AC, Lomax A. In vivo proton range verification: a review. Phys Med Biol. 2013;58:R131-60.
  • 3. Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol. 2012;57:99-117.
  • 4. Kraan AC. Range verification methods in particle therapy: Underlying physics and Monte Carlo modeling. Front Oncol. 2015;5:150.
  • 5. Kim JW. Pinhole camera measurements of prompt gamma-rays for detection of beam range variation in proton therapy. J Kor Phys Soc. 2009;55:1673-76.
  • 6. Krimmer J, Dauvergne D, Letang J, Testa E. Prompt-gamma monitoring in hadrontherapy: A review. Nucl Instrum Methods Phys Res Sect A: Acceler Spectrom Detect Assoc Equip. 2018;878:58-73.
  • 7. Marafini M, Gasparini L, Mirabelli R, Pinci D, Patera V, Sciubba A, et al. Mondo: a neutron tracker for particle therapy secondary emission characterisation. Phys Med Biol. 2017;62:3299.
  • 8. Ytre-Hauge KS, Skjerdal K, Mattingly J. A Monte Carlo feasibility study for neutron based real-time range verification in proton therapy. Sci Rep. 2019;9:2011.
  • 9. Enghardt W, Crespo P, Fiedler F, Hinz R, Parodi K, Pawelke J, et al. Charged hadron tumour therapy monitoring by means of PET. NIM A. 2004;525:284-8.
  • 10. Moteabbed M, Espana S, Paganetti H. Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy. Phys Med Biol. 2011;56:1063-82.
  • 11. Parodi K, Yamaya T, Moskal P. Experience and new prospects of PET imaging for ion beam therapy monitoring. Z Med Phys. 2023;33:22-34.
  • 12. Parodi K, Paganetti H, Shih HA, Michaud S, Loeffler JS, Thomas F, et al. Patient study of in vivo verification of beam delivery and range, using positron emission tomography imaging after proton therapy. Nucl Instrum Methods Phys Res Sect A. 2007;68:920-34.
  • 13. Knopf AC, Parodi K, Paganetti H, Bortfeld T, Daartz J, Engelsman M, et al. Accuracy of proton beam range verification using post treatment positron emission tomography/computed tomography as function of treatment site. Int J Radiat Oncol Biol Phys. 2011;79:297-304.
  • 14. Min CH, Zhu X, Winey BA, Grogg K, Testa M, El Fakhri G, et al. Clinical application of in-room positron emission tomography for in vivo treatment monitoring in proton radiation therapy. Int J Radiat Oncol Biol Phys. 2013;13:183-9.
  • 15. Fiedler F, Shakirin G, Skowron J, Braess H, Crespo P, Kunath D, et al. On the effectiveness of ion range determination from in-beam PET data. Radiology. 2010;55:1989-98.
  • 16. Ferrero V, Fiorina E, Morrocchi M, Pennazio F, Baroni G, Battistoni G, et al. Online proton therapy monitoring: clinical test of a Siliconphotodetector-based in-beam PET. Sci Rep. 2018;8:4100.
  • 17. Fiorina E, Ferrero V, Baroni G, Battistoni G, Belcari N, Camarlinghi N, et al. Detection of inter-fractional morphological changes in proton therapy: a simulation and in-vivo study with the INSIDE in-beam PET. Front Phys. 2020;8:660.
  • 18. Bom V, Joulaeizadeh L, Beekman F. Real-time prompt gamma monitoring in spot-scanning proton therapy using imaging through a knife- -edge-shaped slit. Phys Med Biol. 2012;57:297-308.
  • 19. Knopf A, Parodi K, Bortfeld T, Shih HA, Paganetti H. Systematic analysis of biological and physical limitations of proton beam range verification with offline PET/CT scans. Phys Med Biol. 2009;54:4477-95.
  • 20. Min CH, Kim CH, Youn MY, Kim JW. Prompt gamma measurements for locating the dose falloff region in the proton therapy. Appl Phys Lett. 2006;89:183517.
  • 21. Verburg JM, Seco J. Proton range verification through prompt gamma- -ray spectroscopy. Phys Med Biol. 2014;59:7089-106.
  • 22. Pinto M, Bajard M, Bronset S, Chevallier M, Dauvergne D, Dedes G, et al. Absolute prompt-gamma yield measurements for ion beam therapy monitoring. Phys Med Biol. 2015;60:565-94.
  • 23. Kelleter L, Wronska A, Besuglow J, Konefa A, Laihem K, Leidner J, et al. Spectroscopic study of prompt-gamma emission for range verification in proton therapy. Phys Med. 2017;34:7-17.
  • 24. Golnik C, Hueso-Gonzalez F, Muller A, Dendooven P, Enghardt W, Fiedler F, et al. Range assessment in particle therapy based on prompt γ-ray timing measurements. Phys Med Biol. 2014;59:5399-422.
  • 25. Hueso-Gonzalez F, Enghardt W, Fiedler F, Golnik C, Janssens G, Petzoldt J, et al. First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility. Phys Med Biol. 2015;60:6247-72.
  • 26. Krimmer J, Angellier G, Balleyguier L, Dauvergne D, Freud N, Herault J, et al. A cost-effective monitoring technique in particle therapy via uncollimated prompt gamma peak integration. Appl Phys Lett. 2017;110:154102.
  • 27. Hueso-Gonzalez F, Rabe M, Ruggieri TA, Bortfeld T, Verburg JM. A full- -scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy. Phys Med Biol. 2018;63:185019.
  • 28. Kim CH, Park JH, Seo H, Lee RL. Gamma electron vertex imaging and application to beam range verification in proton therapy. Med Phys. 2012;39:1001-5.
  • 29. Verburg JM, Riley K, Bortfeld T, Seco J. Energy- and time-resolved detection of prompt gamma-rays for proton range verification. Phys Med Biol. 2013;58:L37-L49.
  • 30. Jan ML, Hsiao IT, Huang HM. Use of a LYSO-based Compton camera for prompt gamma range verification in proton therapy. Med Phys. 2017;44:6261-9.
  • 31. Peterson SW, Robertson D, Polf JC. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy. Phys Med Biol. 2010;55:6841-56.
  • 32. Kasper J, Rusiecka K, Hetzel R, Kazemi KM, Lalik R, Magiera A, et al. The SiFi-CC project - Feasibility study of a scintillation fiber-based Compton camera for proton therapy monitoring. Phys Med. 2020;76:317-25.
  • 33. Munoz E, Ros A, Borja-Lloret M, Barrio J, Dendooven P, Oliver JF, et al. Proton range verification with MACACO II Compton camera enhanced by a neural network for event selection. Sci Rep. 2021;11:9325.
  • 34. Gillam J, Lacasta C, Torres-Espallardo I, Candela-Juan C, Llosa G, Solevi P, et al. A Compton imaging algorithm for on-line monitoring in hadron therapy. Phys Med Imaging. 2011;7961:79611O.
  • 35. Draeger E, Mackin D, Peterson S, Chen H, Avery S, Beddar S, et al. 3D prompt gamma imaging for proton beam range verification. Phys Med Biol. 2018;63:035019.
  • 36. Munoz E, Barrientos L, Bernabeu J, Borja-Lloret M, Llosa G, Ros A, et al. A spectral reconstruction algorithm for two-plane Compton cameras., Phys Med Biol. 2020;65:025011.
  • 37. Polf JC, Avery S, Mackin DS, Beddar S. Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: Feasibility studies for range verification. Phys Med Biol. 2015;60:7085-99.
  • 38. Kazemi KM, Magiera A. Machine learning-based event recognition in SiFi Compton camera imaging for proton therapy monitoring. Phys Med Biol. 2022;67:155012.
  • 39. Ortega PG, Torres-Espallardo I, Cerutti F, Ferrari A, Gillam JE, Lacasta C, et al. Noise evaluation of Compton camera imaging for proton therapy. Phys Med Biol. 2015;60:1845-63.
  • 40. Polf JC, Parodi K. Imaging particle beams for cancer treatment. Phys Today. 2015;68:28-33.
  • 41. Parodi K. On- and off-line monitoring of ion beam treatment. Nucl Inst Methods Phys Res A. 2016;809:113-9.
  • 42. Shimazoe K, Uenomachi M. Multi-molecule imaging and inter-molecular imaging in nuclear medicine. Bio-Algorithms and Med-Systems. 2022;18:127-34.
  • 43. Yoshida E, Tashima H, Nagatsu K, Tsuji A, Kamada K, Parodi K, et al. Whole gamma imaging: a new concept of PET combined with Compton imaging. Phys Med Biol. 2020;65:125013.
  • 44. Uenomachi M, Shimazoe K, Takahashi H. A double photon coincidence detection method for medical gamma-ray imaging. Bio-Algorithms Med-Systems. 2022;18:120-6.
  • 45. Llosa G, Rafecas M. Hybrid PET/Compton-camera imaging: an imager for the next generation. Eur Phys J Plus. 2023;138:214.
  • 46. Balibrea-Correa J, Lerendegui-Marco J, Ladarescu I, Guerrero C, Rodrıguez-Gonzalez T, Jimenez-Ramos MC, et al. Hybrid in-beam PETand Compton prompt-gamma imaging aimed at enhanced proton-range verification. Eur Phys J Plus. 2023;137:1258.
  • 47. Moskal P, Kowalski P, Shopa RY, Raczynski L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner-an economic total-body PET from plastic scintillators. Phys Med Biol. 2021;66:175015.
  • 48. Moskal P, Dulski K, Chug N, Curceanu C, Czerwinski E, Dadgar M, et. al. Positronium imaging with the novel multiphoton PET scanner. Sci Adv. 2021;7:eabh4394.
  • 49. Brzezinski K, Baran J, Borys D, Gajewski J, Chug N, Coussat A, et al. Detection of range shifts in proton beam therapy using the J-PET scanner: a patient simulation study. Phys Med Biol. 2023;68:145016.
  • 50. Moskal P, Niedzwiecki S, Bednarski T, Czerwinski E, Kubicz E, Moskal I, et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nucl Instrum Methods Phys Res A. 2014;764:317-21.
  • 51. Moskal P, Rundel O, Alfs D, Bednarski T, Bia las P, Czerwinski E, et al. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph. Phys Med Biol. 2016;61:2025.
  • 52. Jan S, Benoit D, Becheva E, Carlier T, Cassol F, Descourt P, et al. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol. 2011;56:881-901.
  • 53. Sarrut D, Bardiès M, Boussion N, Freud N, Jan S, Létang JM, et al. A review of the use and potential of the gate Monte Carlo simulation code for radiation therapy and dosimetry applications. Med Phys. 2014;41:064301.
  • 54. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et. al. Geant4 - A simulation toolkit. Nucl Instrum Methods Phys Res B NUCL INSTRUM METH A. 2003;506:250-303.
  • 55. Etxebeste A, Dauvergne D, Fontana M, Letang JM, Llosa G, Munoz E, et al. CCMod: a GATE module for Compton Camera imaging simulation. Phys Med Biol. 2020;65:055004.
  • 56. Gajewski J, Garbacz M, Chang CW, Czerska K, Durante M, Krah N, et al. Commissioning of GPU-accelerated Monte Carlo code Fred for clinical applications in proton therapy. Front Phys. 2021;8:567300.
  • 57. Geant4 collaboration. Guide for Physics Lists. Release 10.4. 2020.
  • 58. Zahra N, Frisson T, Grevillot L, Lautesse P, Sarrut D. Influence of Geant4 parameters on dose distribution and computation time for carbon ion therapy simulation. Phys Med. 2010;26:202-8.
  • 59. Kazemi M, Afarideh H, Riazi Z. Evaluation of Open MPI and MPICH2 performances for the Computation Time in Proton Therapy Dose Calculations with Geant4”. J Korean Phys Soc. 2015;67:1686-91.
  • 60. Foley KJ, Clegg AB, Salmon GL. Gamma radiation from bombardment of 16O and 19F nuclei with 150 MeV protons. Nucl Phys. 1962;31:43-52.
  • 61. Zarifi M, Guatelli S, Bolst D, Hutton B, Rosenfeld A, Qi Y. Characterization of prompt gamma-ray emission with respect to the Bragg peak for proton beam range verification: A Monte Carlo study. Phys Med. 2016;33:197-206.
  • 62. Wilderman SJ, Clinthorne NH, Fessler JA, Rogers WL. List-mode maximum likelihood reconstruction of Compton scatter camera images in nuclear medicine. EEE Nucl Sci Symp Med Imaging Conf Rec. 1998;3:1716-20.
  • 63. Mackin D, Peterson S, Beddar S, Polf J. Evaluation of a stochastic reconstruction algorithm for use in Compton camera imaging and beam range verification from secondary gamma emission during proton therapy. Phys Med Biol. 2012;57:3537-53.
  • 64. Kohlhase N, Wegener T, Schaar M, Bolke A, Etxebeste A, Sarrut D, et al. Capability of MLEM and OE to detect range shifts with a Compton camera in particle therapy. IEEE Trans Rad and Plasma Med Sci. 2019;4:233-42.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7228ff1-f329-4a04-a074-145be1a481ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.