PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure Evolution and Wear Resistance of Boron-Bearing High Speed Steel Roll

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The microstructure evolution of boron-bearing high speed steel roll materials after casting and tempering was investigated. The results indicate that as-cast boron-bearing high speed steel consists of martensitic matrix, retained austenite and different borocarbides. The as-cast alloy has a hardness above 64 HRC, and the borocarbides distribute along the grain boundaries. After RE-Mg-Ti compound modification treatment, obvious necking and broken network appear in the grain boundaries. The hardness of boron-bearing high speed steel roll materials reduces gradually with the increase of tempering temperature. Under the same conditions, the toughness of the modified roll material is higher than that of the unmodified roll material. Wear tests show that the wear resistance of boron-bearing high-speed steel modified by RE-Mg-Ti compound modification treatment is better.
Twórcy
autor
  • School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, Xi’an 710048, Shaanxi province, P. R. China
  • MCC Jingcheng Engineering Technology Co., Ltd., Beijing 100176, P. R. China
autor
  • School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, Xi’an 710048, Shaanxi province, P. R. China
Bibliografia
  • [1] L. Ribeiro, A. Barbosa, F. Viana, A.M. Baptista, C. Dias, C.A. Ribeiro, Wear. 270 (7-8), 535-540 (2011).
  • [2] B.U. Cho, SEAISI Quarterly. 42 (3), 54-55 (2013).
  • [3] M.W. Kang, Y.C. Suh, Y.J. Oh, Y.K. Lee, J. Alloy Compd. 609, 25-32 (2014).
  • [4] T. Válek, Z. Kuboň, J. Kosňovská, Arch. Metall. Mater. 63 (4), 1859-1863 (2018).
  • [5] A. Avtukhov, Metall. Mining Industry. 7 (9), 1080-1084 (2015).
  • [6] M.W. Kang, Y.K. Lee, Metall. Mater. Trans. A. 47 (7), 3365-3374 (2016).
  • [7] K.V. Redkin, J.S. Vipperman, C. Hnzo, R. Schleiden, C.I. Garcia, Iron Steel Technol. 10 (10), 69-84 (2013).
  • [8] A. Yamamoto, Y. Ishii, H.G. Kang, F. Sakata, A. Sonoda, M. Hashimoto, Mater. Trans. 60 (5), 770-776 (2019).
  • [9] G.J. Li, M.J. Feng, J. Cent. South Univ. 21 (3), 849-856 (2014).
  • [10] M. Nilsson, M. Olsson, Wear. 307 (1-2), 209-217 (2013).
  • [11] N.F. Garza-Montes-De-Oca, J.H. Ramírez-Ramírez, L. Alvarez-Elcoro, W.M. Rainforth, R. Colás, Oxid. Met. 80 (1-2), 191-203 (2013).
  • [12] H.G. Fu, H.J. Zhao, Z.Z. Du, Z.J. Feng, Y.P. Lei, Y. Zhang, M.W. Li, Y.H. Jiang, R. Zhou, H.X. Guo, Ironmak. Steelmak. 38 (5), 338-345 (2011).
  • [13] H.G. Fu, Z.H. Li, Z.Q. Jiang, J.D. Xing, Mater. Lett. 61 (23-24), 4504-4507 (2007).
  • [14] Q. Cen, H. Fu, Mater. Sci. Eng. Technol. 44 (7), 612-617 (2013).
Uwagi
1. The authors would like to thank the financial support for this work from Natural Science Foundation of Shaanxi Province under grant (2018JM5096).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d71c041c-208c-468c-9c83-97f758ca6d71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.