PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of Proportional-Integral Controllers of Grid-Connected Wind Energy Conversion System Using Grey Wolf Optimizer Based on Artificial Neural Network for Power Quality Improvement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research presents a combination of artificial neural network (ANN) with the grey wolf optimizer (GWO) to improve the power quality of a grid-connected distributed power generation system (DPGS). To assess the effectiveness of the proposed algorithm, a grid-tied of small-scale wind energy conversion system (WECS) is chosen. The term power quality refers to voltage and frequency regulation, and limited harmonics. Power quality improvement is achieved through the cascaded control system's optimal tuning of three proportional-integral (PI) controllers of the grid-side inverter (GSI). However, because the DPGS model is computationally costly, the Artificial Neural Network (ANN) model is utilized as an alternative model for DPGS. Furthermore, the ANN model is employed in conjunction with the GWO to boost the optimization precision and minimize the execution time of GWO. The considered power system was repetitively simulated to obtain the input-output datasets, which validate and train the ANN model. According to the ANN model's performance evaluation, the correlation coefficient (R) is close to one, while the mean squared error (MSE) is near zero. These findings demonstrate the ANN model's great accuracy in approximating the DPGS model. Using MATLAB/Simulink, the system's performance is evaluated using the optimum values obtained using GWO-ANN for various wind speed profiles. It showed the suggested power quality method’s improved stability, convergence behavior, the effectiveness of the control mechanism, and the robustness of the proposed topology.
Twórcy
  • Department of Electrical and Electronic Engineering, Karabuk University, Karabuk, Turkey
  • Department of Electrical and Electronic Engineering, Karabuk University, Karabuk, Turkey
autor
  • Department of Electrical and Electronic Engineering, Karabuk University, Karabuk, Turkey
Bibliografia
  • 1. Yaylacı E, Yazici İ. Sensorless double integral sliding mode MPPT control for the WECS. J Renew Sustain Energy. 2018;10(2):023301.
  • 2. Lee J, Zhao F. GWEC Global Wind Report. Glob Wind Energy Counc. 2022;75.
  • 3. Gryniewicz-Jaworska M. Application of Heuristic Optimization for the Selection of Parameters of the Generation System and Reactive Power Consumption of Wind Farms. Adv Sci Technol Res J. 2020;14(3):9–14.
  • 4. Bhadane K V, Jaware TH, Patil DP, Nayyar A. Wind Energy System Grid Integration and Grid Code Requirements of Wind Energy System. In Springer; 2021.
  • 5. Ackermann T. Wind Power in Power Systems. Second Ed. John Wiley & Sons Ltd; 2012.
  • 6. Nirosha C, Patra PSK. Power Quality Issues of Wind and Solar Energy Systems Integrated into the Grid. Adv Sci Lett. 2020;26(5):514–23.
  • 7. Yaramasu V, Wu B. Model Predictiv Control of Wind Energy Conversion Systems. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2017.
  • 8. Eltamaly AM, Abdelaziz AY. Control and Operation of Grid-Connected Wind Energy Systems. Springer; 2021.
  • 9. Oumaymah E. The injection of wind power into a grid using a multi-level inverter controlled by SVPWM. In: 4th International Conference on Electrical and Information Technologies ICEIT. Rabat, Morocco; 2020. p. 0–5.
  • 10. Farh HMH, Eltamaly AM. Fuzzy Logic Control of Wind Energy Conversion System. J Renew Sustain Energy ·. 2013;5(2014):023125.
  • 11. Li Z, Member S, Zang C, Zeng P, Yu H. Control of A Grid-Forming Inverter Based on Sliding Mode and Mixed H2 / H∞ Control. IEEE Trans Ind Electron. 2016;0046(c).
  • 12. Errami Y, Ouassaid M, Maaroufi M. A performance comparison of a nonlinear and a linear control for grid connected PMSG wind energy conversion system. Int J Electr POWER ENERGY Syst. 2015;68:180–94.
  • 13. Abdalrahman A, Zekry A. Control of the gridconnected inverter using dsPIC microcontroller. Proc 2013 2nd Int Japan-Egypt Conf Electron Commun Comput JEC-ECC 2013. 2013;(January 2014):159–64.
  • 14. Wang Z, Qiu S, Song R, Wang X, Zhu B, Li B. Research on PID parameter tuning of coordinated control for ultra-supercritical units based on Ziegler Nichols method. IEEE. 2019;(Imcec):1155–8.
  • 15. Przystupa K. Tuning of PID Controllers – Approximate Methods. Adv Sci Technol Res J. 2018;12(4):56–64.
  • 16. Pajchrowski T, Zawirski K, Member S, Nowopolski K. Neural Speed Controller Trained Online by Means of Modified RPROP Algorithm. 560 IEEE Trans Ind INFORMATICS. 2015;11(April):560–8.
  • 17. Hasanien HM, Member S, Muyeen SM, Member S. A Taguchi Approach for Optimum Design of Proportional-Integral Controllers in Cascaded Control Scheme. IEEE Trans Power Syst. 2012;(May 2013).
  • 18. Joseph E, Olaiya OO. Cohen-coon PID Tuning Method ; A Better Option to Ziegler Nichols-PID Tuning Method. IJRERD. 2017;02(11):141–5.
  • 19. Muyeen SM. An Affine Projection Algorithm based Adaptive Control Scheme for Operation of Variable-Speed Wind Generator. IET Gener Transm Distrib. 2015;9(August 2017):2611–6.
  • 20. Agarwal J, Parmar G, Gupta R, Sikander A. Analysis of grey wolf optimizer based fractional order PID controller in speed control of DC motor. Microsyst Technol. 2018;24(12):4997–5006.
  • 21. Qais MH, Hasanien HM, Alghuwainem S. A Grey Wolf Optimizer for Optimum Parameters of Multiple PI Controllers of a Grid-Connected PMSG Driven by Variable Speed Wind Turbine. IEEE. 2018; P 1.
  • 22. Nicola M, Nicola CI. Improved Performance of Grid-Connected Photovoltaic System Based on Fractional-Order PI Controller and Particle Swarm optimization. Proc 2021 9th Int Conf Mod Power Syst MPS. 2021;(July):1–5.
  • 23. Leandro B, Costa G, Bacon VD, Oliveira SA. Tuning of a PI-MR Controller Based on Differential Evolution Metaheuristic Applied to the Current Control Loop of a Shunt-APF. IEEE Trans Ind Electron. 2017;0046(c).
  • 24. Durongdumrongchai P, Sa-Ngiamvibool W, Aurasopon A, Pothiya S. optimal fuzzy logic proportional integral derivative controllers design by bee algorithm for hydro-thermal system. Rev Roum des Sci Tech Ser Electrotech Energ. 2014;59(2):193–203.
  • 25. Haridy AL. The Whale Optimization Algorithm based controller forfor PMSG wind energy generation system. 2019 Int Conf Innov Trends Comput Eng. 2019;(February):438–43.
  • 26. Hasanien HM, Muyeen SM. Design optimization of controller parameters used in variable speed wind energy conversion system by genetic algorithms. IEEE Trans Sustain Energy. 2012;3(2):200–8.
  • 27. Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf Optimizer. Adv Eng Softw. 2014;69:46–61.
  • 28. Faris H, Aljarah I, Azmi M, Mirjalili AS. Grey wolf optimizer : a review of recent variants and applications. Neural Comput Appl. 2017;30(July 2018):413–35.
  • 29. Şen MA, Kalyoncu M. Optimal Tuning of PID Controller Using Grey Wolf Optimizer Algorithm for Quadruped Robot. Balk J Electr Comput Eng. 2018;6(1):29–35.
  • 30. Kouba NEY, Menaa M, Hasni M, Boudour M. LFC enhancement concerning large wind power integration using new optimised PID controller and RFBs. IET Gener Transm Distrib. 2016;10(16):4065–77.
  • 31. Yadav S, Verma SK, Nagar SK. Optimized PID controller for magnetic levitation system. IFACPapersOnLine. 2016;49(1):778–82.
  • 32. Sule AH, Mokhtar AS, Bin Jamian JJ, Sheikh UU, Khidrani A. Grey Wolf Optimizer Tuned PI Controller for Enhancing Output Parameters of Fixed Speed Wind Turbine. 2020 IEEE Int Conf Autom Control Intell Syst I2CACIS 2020 – Proc. 2020;(June):118–22.
  • 33. Osman A-SA, El-Wakeel AS, Kamel A, Seoudy HM, Osman, A. A. El-Wakeel, A. S., kamel, A., and Seoudy HM. Optimal tuning of PI Controllers for Doubly-Fed Induction Generator using Grey Wolf Optimizer. Int J Eng Res Appl. 2015;5(11):81–7.
  • 34. Aguila-Leon J, Chinas-Palacios CD, Vargas-Salgado C, Hurtado-Perez E, Garcia EXM. Optimal PID Parameters Tunning for a DC-DC Boost Converter: A Performance Comparative Using Grey Wolf Optimizer, Particle Swarm Optimization and Genetic Algorithms. In: IEEE Conference on Technologies for Sustainability,. Santa Ana, CA USA; 2020. p. 1–6.
  • 35. Song X, Tang L, Zhao S, Zhang X, Li L, Huang J, et al. Grey Wolf Optimizer for parameter estimation in surface waves. Soil Dyn Earthq Eng. 2015;75:147–57.
  • 36. Abdolrasol MGM, Hussain SMS, Ustun TS, Sarker MR, Hannan MA, , Ramizi Mohamed , Jamal Abd Ali, Saad Mekhilef AM. Artificial Neural Networks Based Optimization Techniques : A Review. Electronics. 2021;10(2689):43.
  • 37. Raju P, Rao VM, Rao BP, Raju P, Rao VM, Rao BP. Grey Wolf optimization based Artificial Neural Network for Classification of Kidney Images. J Circuits, Syst Comput. 2018;27(14):1850231.
  • 38. Hadavandi E, Mostafayi S, Soltani P. A Grey Wolf Optimizer-based Neural Network Coupled with Response Surface Method for Modeling the Strength of Siro-spun Yarn in Spinning Mills. Appl Soft Comput J. 2018;27(2018):1–13.
  • 39. Majumder P, Eldho TI. Artificial Neural Network and Grey Wolf Optimizer Based Surrogate Simulation-Optimization Model for Groundwater Remediation. Water Resour Manag. 2020;34:763–83.
  • 40. Kalaam RN, Muyeen SM, Al-Durra A, Hasanien HM, Al-Wahedi K. Optimisation of controller parameters for gridtied photovoltaic system at faulty network using artificial neural network-based cuckoo search algorithm. IET Renew Power Gener. 2017;11(12):1517–26.
  • 41. Göçken M, Boru A, Dosdogru AT, Özçalici M. Integrating metaheuristics and artificial neural network for weather forecasting. Int J Glob Warm. 2018;14(4):440–61.
  • 42. Gündoğdu A, Çelikel R. ANN-Based MPPT Algorithm for Photovoltaic Systems. Turkish J Sci Technol. 2020;15(2):101–10.
  • 43. Rahman M, Islam S. PSO and ANN Based Hybrid MPPT Algorithm for Photovoltaic Array under Partial Shading Condition. Eng Int. 2020;8(1):9–24.
  • 44. Yazıcı İ, Yaylacı EK, Yalçın F. Modified golden section search based MPPT algorithm for the WECS. Eng Sci Technol an Int J. 2021;24(5):1123–33.
  • 45. Yazici I, Yaylaci EK, Cevher B, Yalçln F, Yüzkollar C. A new MPPT method based on a modified Fibonacci search algorithm for wind energy conversion systems. J Renew Sustain Energy. 2021;13(1):013304.
  • 46. Moghdani S and. A Hybrid Artificial Neural Network with Metaheuristic Algorithms for Predicting Stock Price. Cybern Syst AN Int J. 2017;9722(March):0–28.
  • 47. Chapter B. Advanced Optimization by Nature-Inspired Algorithms. Studies in Computational Intelligence. Springer; 2018.
  • 48. Bansal JC, Singh S. A better exploration strategy in Grey Wolf Optimizer. J Ambient Intell Humaniz Comput. 2021;12(1):1099–118.
  • 49. Dada E, Joseph S, Oyewola D, Fadeel A, Chiroma H, Abdulhamid S. Application of Grey Wolf Optimization Algorithm: Recent Trends, Issues, and Possible Horizons. Gazi Univ J Sci. 2021;35(2):485–504.
  • 50. Sulaiman MH, Mustaffa Z, Mohamed MR, Aliman O. Using the gray wolf optimizer for solving optimal reactive power dispatch problem. Appl Soft Comput J. 2015;32:286–92.
  • 51. Hassan HA, Zellagui M. Application of grey wolf optimizer algorithm for optimal power flow of two-terminal HVDC transmission system. Adv Electr Electron Eng. 2017;15(5):701–11.
  • 52. Sezer K, Bayhan N. Comparison of Metaheuristic Algorithm Performances for Optimization of Fractional Order PID Controllers Applied to Gas Turbine Power Plant. Aeronaut Sp Technol. 2021;14(2):209–19.
  • 53. Kamal S, Rani S, Rattan DM. Review of Grey Wolf Optimizer and Its Applications. Int J Eng Appl Sci Technol. 2020;04(11):208–11.
  • 54. Schiefer H, Schiefer F. Statistics for Engineers An Introduction with Examples from Practice. springer. 2021.
  • 55. Mohod SW, Aware M V. Power Quality and Grid Code Issues in Wind Energy Conversion System. In InTech; 2013.
  • 56. Saïd-Romdhane M Ben, Naouar MW, Belkhodja IS, Monmasson E. Simple and systematic LCL filter design for three-phase grid-connected power converters. Math Comput Simul. 2016;130:181–93.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d718980f-f485-48a4-bfd8-dbbf59a53270
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.