Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
O podobieństwach i wyzwaniach regulatorów wielorezonansowych i regulatorów z uczeniem iteracyjnym dla przekształtników sieciowych oraz dlaczego sprzężenie w przód ma znaczenie
Języki publikacji
Abstrakty
There are two main techniques to solve the reference tracking problem for repetitive references and under repetitive disturbances, namely multiresonant (a.k.a. multioscillatory) controllers and iterative learning controllers. Nevertheless, neither of the approaches is a definitive winner, which is to be demonstrated herein. Both have their strengths, weaknesses and challenges. A grid-tie converter will be the case study here. The goal is to draw or inject sinusoidal currents under distorted grid voltage conditions. The supporting feedforward controller will be addressed within the context of the discussed repetitive control task. The case will be illustrated using numerical simulations. Our main goal is to make practitioners familiar with the relationships between these two control methods.
Istnieją dwia główne sposoby rozwiązywania zadania regulacji nadążnej dla powtarzalnego sygnału zadanego w obecności powtarzalnego zakłócenia, jest to zastosowanie regulatorów wielorezonansowych (zwanych też wielooscylacyjnymi) oraz regulatorów z uczeniem iteracyjnym. Jednak żadnego z tych rozwiązań nie można uznać za jednoznacznie lepsze, co zostanie tutaj pokazane. Oba cechują zarówno mocne strony, jak i pewne słabci oraz wyzwania implementacyjne. Przekształtnik sieciowy posłuży tutaj za przykład. Celem jest pobieranie lub oddawanie sinusoidalnego prądu sieci pomimo odkształconego napięcia. Omówione zostanie również sprzężenie w przód od zakłócenia w kontekście zadania sterowania powtarzalnego. Zagadnienie zostanie zilustrowane przy użyciu symulacji komputerowych. Naszym głównym celem jest pokazanie praktykom związków pomiędzy tymi dwiema metodami sterowania.
Wydawca
Czasopismo
Rocznik
Tom
Strony
38--46
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, 75 Koszykowa St., Warsaw 00-662, Poland
autor
- Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, 75 Koszykowa St., Warsaw 00-662, Poland
autor
- Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, 75 Koszykowa St., Warsaw 00-662, Poland
autor
- Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, 75 Koszykowa St., Warsaw 00-662, Poland
Bibliografia
- [1] Xu M. X., Xu D., Lin P., Chen M., Ni J., Zhang T.: Understanding repetitive control and resonant control, 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 621–627, Aalborg, 2012.
- [2] Nazir R.: Advanced repetitive control of grid converters for power quality improvement under variable frequency conditions, Ph.D. Dissertation, University of Canterbury, Christchurch, New Zealand, 2015.
- [3] Francis B. A., Wonham W. M.: The internal model principle of control theory, Automatica, vol. 12, pp. 457–465, Pergamon Press, 1976.
- [4] Bengtsson G.: Output regulation and internal models – a frequency domain approach, Automatica, vol. 13, pp. 333–345, Pergamon Press, 1977.
- [5] Ludwick S. J.,Profeta J. A.: A user’s guide to repetitive control systems and the internal model principle, http://www.aspe.net/publications/Spring_ 2010/Spr10Ab/3006Ludwick.pdf, Aerotech, Inc., Pittsburgh, PA, USA
- [6] Żak S. H.: The internal model principle, https: //engineering.purdue.edu/~zak/ECE_3822014/hand_3.pdf, ECE 382 Fall 2016 course handouts, Purdue University, 2016.
- [7] Li P.: Internal model principle, http://www.me.umn.edu/ courses/me8281/Old/IMP-repetitive.pdf, ME 8281 Spring 2006 course handouts, University of Minnesota, 2006.
- [8] Wang Y., Gao F., Doyle F. J.: Survey on iterative learning control, repetitive control, and run-to-run control, Journal of Process Control, vol. 19, pp. 1589–1600, 2009.
- [9] Dabkowski P., Galkowski K., Rogers E., Sebek M.: Robustness of uncertain discrete linear repetitive processes with disturbance attenuation, European Control Conference (ECC), Aalborg, pp. 2288–2293, 2016.
- [10] Ufnalski B., Grzesiak L.: Repetitive neurocontroller with disturbance feedforward path active in the pass-to-pass direction for a VSI inverter with an output LC filter, Bulletin of the Polish Academy of Sciences – Technical Sciences, PAN, vol. 64, no. 1, pp. 115–125, 2016.
- [11] Ufnalski B., Grzesiak L.: Plug-in direct particle swarm repetitive controller with a reduced dimensionality of a fitness landscape – a multi-swarm approach, Bulletin of the Polish Academy of Sciences – Technical Sciences, PAN, vol. 63, no. 4, pp. 857–866, 2015.
- [12] Ufnalski B., Grzesiak L. M., Malkowski M.: Hybridization schemes for particle swarm iterative learning controllers in repetitive systems, European Power Electronics (EPE’17 ECCE Europe) Conference, Warsaw, 2017.
- [13] Ufnalski B.: Hybrid swarm-based repetitive controller with adaptive forgetting for a grid-tie converter, https://www.mathworks.com/matlabcentral/ fileexchange/64056-hybrid-swarm-basedrepetitive-controller-with-adaptiveforgetting-for-a-grid-tie-converter, August 2017.
- [14] Galecki A., Michalczuk M., Kaszewski A., Ufnalski B., Grzesiak L.: Multi-oscillatory current control with anti-windup for grid-connected VSCs operated under distorted grid voltage conditions, European Power Electronics (EPE’17 ECCE Europe) Conference, Warsaw, 2017.
- [15] Wikipedia: Bilinear transform, https://en.wikipedia. org/wiki/Bilinear_transform, accessed on 18.07.2017.
- [16] Yepes A. G.: Digital resonant current controllers for voltage source converters, http://agyepes.webs.uvigo.es/ files/Thesis.pdf, PhD dissertation, University of Vigo, Spain, 2011.
- [17] Wolfram Research: http://functions.wolfram.com/ ElementaryFunctions/Sinh/, accessed on 21.07.2017.
- [18] Xu M. X., Xu D., Lin P., Chen M., Ni J., Zhang T.: Understanding repetitive control and resonant control, 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 621–627, Aalborg, 2012.
- [19] Nazir R.: Taylor series expansion based repetitive controllers for power converters, subject to fractional delays, Control Engineering Practice, vol. 64, pp. 140–147, 2017.
- [20] Nazir R., Wood A., Laird H., Watson N.: An adaptive repetitive controller for three-phase PWM regenerative rectifiers, International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, pp. 1126–1131, 2015.
- [21] Yang Y., Zhou K., Blaabjerg F.: Enhancing the frequency adaptability of periodic current controllers with a fixed sampling rate for grid-connected power converters, IEEE Transactions on Power Electronics, vol. 31, no. 10, pp. 7273–7285, 2016.
- [22] Yang Y., Zhou K., Blaabjerg F.: Frequency adaptability of harmonics controllers for grid-interfaced converters, International Journal of Control, 90:1, 3–14, 2017.
- [23] Wang X., Blaabjerg F., Loh P. C.: Design-oriented analysis of resonance damping and harmonic compensation for LCL filtered voltage source converters, International Power Electronics Conference (IPEC – ECCE ASIA), pp. 216-223, 2014.
- [24] Yepes A. G., Freijedo F. D., Lopez O., Doval-Gandoy J.: Highperformance digital resonant controller simplemented with two integrators, IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 563–576, 2011.
- [25] Yepes A. G., Freijedo F. D., Lopez O., Doval-Gandoy J.: Correction to “High performance digital resonant controllers implemented with two integrators”, IEEE Transactions on Power Electronics, vol. 27, no. 10, pp. 4357-4357, 2012.
- [26] Ufnalski B.: ILC vs. MOSC, https://www.mathworks. com/matlabcentral/fileexchange/64036-ilc-vsmosc, November 2017.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d71832ea-cfb5-42ea-a85c-7766fd97dc3e