PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the BEAVRS PWR benchmark using SCALE and PARCS

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an analysis of the Benchmark for Evaluation And Validation of Reactor Simulations (BEAVRS) performed using SCALE 6.1.2 and PARCS 3.2 computer codes. The benchmark specifi cation contains a detailed design, operational data and measurements for a real 4-loop Westinghouse pressurized water reactor (PWR). The lattice physics simulations were prepared using TRITON depletion sequence and NEWT neutron transport solver (SCALE package). The 238-neutron group library based on evaluated nuclear data fi le – ENDF/B-VII nuclear data libraries was applied. A set of branch and burnup calculations was prepared, and group constants in the form of PMAXS fi les were generated with GenPMAXS. The full-core models were prepared using the PARCS nodal-diffusion core simulator. The PMAXS libraries were used with PARCS to investigate the core operation. The hot zero power measurement data, including control rod worths and critical boron concentrations, were compared using simulations, and satisfactory results were achieved. The fi rst fuel cycle was simulated, and acceptable agreement with boron letdown curve and measurements were obtained. Finally, conclusions and recommendations for future research were presented.
Słowa kluczowe
EN
Czasopismo
Rocznik
Strony
87--96
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Institute of Heat Engineering Faculty of Power and Aeronautical Engineering Warsaw University of Technology 21/25 Nowowiejska St., 00-665 Warsaw, Poland
  • Institute of Heat Engineering Faculty of Power and Aeronautical Engineering Warsaw University of Technology 21/25 Nowowiejska St., 00-665 Warsaw, Poland
Bibliografia
  • 1. Oak Ridge National Laboratory. (2011). SCALE: A comprehensive modeling and simulation suite for nuclear safety analysis and design. Version 6.1. Oak Ridge, TN, USA: ORNL. (ORNL/TM-2005/39).
  • 2. US Nuclear Regulatory Commission. (2013). SCALE/TRITON Primer: A primer for light water reactor lattice physics calculations using SNAP. U.S. NCR.
  • 3. MIT Computational Reactor Physics Group. (2013).BEAVRS – benchmark for evaluation and validation of reactor simulations. Rev. 1.1.1. Cambridge, UK: MIT CRPG.
  • 4. MIT Computational Reactor Physics Group. (2017). BEAVRS – benchmark for evaluation and validation of reactor simulations. Rev. 2.0.1. Cambridge, UK: MIT CRPG.
  • 5. Horelik, N., Herman, B. R., Forget, B., & Smith, K. (2013). Benchmark for Evaluation and Validation of Reactor Simulations (BEAVRS). In International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, May 5–9, 2013, Sun Valley, ID, USA (Vol., 4, pp. 2986–2999).LaGrange Park, IL, USA: American Nuclear Society. (CD edition).
  • 6. Park, H. J., Lee, H. C., Shim, H. J., & Cho, J. Y. (2016). Real variance analysis of Monte Carlo eigenvalue calculation by McCARD for BEAVRS benchmark. Ann. Nucl. Energy, 90, 205–211. doi: 10.1016/j.anucene.2015.12.009.
  • 7. Liu, S., Liang, J., Wu, Q., Guo, J., Huang, S., Tang, X., Li, Z., & Wang, K. (2017). BEAVRS full core burnup calculation in hot full power condition by RMC code. Ann. Nucl. Energy, 101, 434–446. doi: 10.1016/j.anucene.2016.11.033.
  • 8. Wan, C., Cao, L., Wu, H., & Shen, W. (2017). Uncertainty analysis for the assembly and core simulation of BEAVRS at the HZP conditions. Nucl. Eng. Des., 315, 11–19. doi: 10.1016/j.nucengdes.2017.02.020.
  • 9. Electric Power Research Institute. (2015). PWR fuel reactivity depletion uncertainty quantifi cation –methods validation using BEAVRS Flux Map Data.EPRI.
  • 10. Leppänen, J., Mattila, R., & Pusa, M. (2014). Validation of the Serpent-ARES code sequence using the MIT BEAVRS benchmark – initial core at HZP conditions. Ann. Nucl. Energy, 69, 212–225. doi:10.1016/j.anucene.2014.02.014.
  • 11. Gang, L., Dunfu, S., Baoyin, Z., Rui, L., Zehua, H.,& Yuanguang, F. (2016). The application of JMCT to HZP of BEAVRS. In Physics of Reactors 2016 – PHYSOR 2016 – Unifying Theory and Experiments in the 21st Century, May 1–5, 2016, Sun Valley, ID, USA (pp. 4131–4138). LaGrange Park, IL, USA: American Nuclear Society. (CD edition).
  • 12. Bykov, V. (2016). Solution of the BEAVRS benchmark using CASMO-5/SIMULATE-5 Code sequence. In Physics of Reactors 2016 – PHYSOR 2016 – Unifying Theory and Experiments in the 21st Century, May 1–5, 2016, Sun Valley, ID, USA (pp. 0–3). LaGrange Park, IL, USA: American Nuclear Society. (CD edition).
  • 13. Taforeau, J., & Salino, V. (2016). Analysis of the MIT BEAVRS Benchmark using the DRAGON-5/PARCS code sequence. In Physics of Reactors 2016 – PHYSOR 2016 – Unifying Theory and Experiments in the 21st Century, May 1–5, 2016, Sun Valley, ID, USA (pp. 2940–2949). LaGrange Park, IL, USA: American Nuclear Society. (CD edition).
  • 14. Li, Z., Wu, H., Cao, L., Tian, C., & Chen, D. (2016). On-line monitoring analysis of BEAVRS benchmark using NECP-ONION. In Physics of Reactors 2016 –PHYSOR 2016 – Unifying Theory and Experiments in the 21st Century, May 1–5, 2016, Sun Valley, ID, USA (pp. 3637–3648). LaGrange Park, IL, USA: American Nuclear Society. (CD edition).
  • 15. Harrison, R. D., & Wheeler, A. F. (2016). Validation of WIMS/PANTHER PWR fuel reactivity depletion using the BEAVRS Benchmark fl ux map data. In Physics of Reactors 2016 – PHYSOR 2016 – Unifying Theory and Experiments in the 21st Century, May 1–5, 2016, Sun Valley, ID, USA (pp. 2833–2846).LaGrange Park, IL, USA: American Nuclear Society.(CD edition).
  • 16. Wang, K., Liu, S., Li, Z., Wang, G., Liang, J., Yang, F., Chen, Z., Guo, X., Qiu, Y., Wu, O., Guo, J. J., & Tang, X. (2017). Analysis of BEAVRS two-cycle benchmark using RMC based on full core detailed model. Prog. Nucl. Energy, 98, 1–12. doi: 10.1016/j.pnucene.2017.04.009.
  • 17. Collins, B., & Godfrey, A. (2015). Analysis of the BEAVRS Benchmark using VERA-Cs. In ANS MC2015 – Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, April 19–23, 2015, Nashville, N, USA. LaGrange Park, IL, USA: American Nuclear Society. (CD Edition) (11 pp.). Available from https://www.casl.gov/sites/default/fi les/docs/CASL-U-2015-0183-000.pdf.
  • 18. Park, H. J., Lee, H. C., Cho, J. Y., Shim, H. J., & Kim, C. H. (2015). Real variance estimation of BEAVRS benchmark in McCARD Monte Carlo eigenvalue calculations. In ANS MC2015 – Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, April 19–23, 2015, Nashville, TN, USA (pp. 110–121). LaGrange Park, IL, USA: American Nuclear Society. (CD edition).
  • 19. Ryu, M., Jung, Y. S., Cho, H. H., & Joo, H. G. (2015). Solution of the BEAVRS benchmark using the nTRACER direct whole core calculation code. J. Nucl. Sci. Technol., 52, 961–969. doi:10.1080/00223131.2015.1038664.
  • 20. Kelly, D. J., Aviles, B. N., Romano, P. K., Herman, B. R., Horelik, N. E., & Forget, B. (2014). Analysis of Select BEAVRS PWR benchmark Cycle 1 results using MC21 and OPENMC. In PHYSOR 2014 – The Role of Reactor Physics towards a Sustainable Future, 28 September – 3 October 2014, Kyoto, Japan (pp. 1–15).
  • 21. Suzuki, M., & Nauchi, Y. (2015). Analysis of BEAVRS benchmark problem by using enhanced Monte Carlo Code MVP with Jendl-4.0. In ANS MC2015 – Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, April 19–23, 2015, Nashville, TN, USA (pp. 1–11). LaGrange Park, IL, USA: American Nuclear Society. (CD edition).
  • 22. Wang, Z., Wu, B., Hao, L., Liu, H., & Song, J. (2018). Validation of SuperMC with BEAVRS benchmark at hot zero power condition. Ann. Nucl. Energy, 111, 709–714. doi: 10.1016/j.anucene.2017.09.045.
  • 23. O’Grady, D., Kozlowski, T., & Hudson, N. (2018). Analysis of the BEAVRS benchmark using the Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 21.11.19 09:38 UTC 96 P. Darnowski, M. Pawluczyk TRITON/PARCS/PATHS two-step sequence. In PHYSOR 2018 – Reactors Physics Paving the Way Towards More Effi cient Systems, April 22–26, 2018, Cancun, Mexico (pp. 1–11). 24. Leppänen, J., & Mattila, R. (2016). Validation of the Serpent-ARES code sequence using the MIT BEAVRS benchmark HFP – conditions and fuel Cycle 1 simulations. Ann. Nucl. Energy, 96, 324–331. doi: 10.1016/j.anucene.2016.06.014.
  • 25. US Nuclear Regulatory Commission. (2012). SCALE/TRITON Primer: A Primer for Light Water Reactor Lattice Physics Calculations – with SNAP. (NUREG/CR-7041, ORNL/TM-2011/21). Available from https://www.nrc.gov/docs/ML1233/ML12338A215.pdf.
  • 26. MIT Computational Reactor Physics Group. (2018, April). BEAVRS – Benchmark for evaluation and validation of reactor simulations.. Release rev. 2.0.2.Available from https://crpg.mit.edu/sites/default/fi les/css_injector_images_image/BEAVRS_2.0.2_spec.pdf.
  • 27. Oak Ridge National Laboratory. (2011). SCALE/TRITON Primer: A primer for Light Water Reactor lattice physics calculations – NO SNAP. (NUREG/CR-7041, ORNL/TM-2011/21).
  • 28. US Nuclear Regulation Commission. (2013). Cross section generation guidelines for TRACE-PARCS. (NUREG/CR-7164, ORNL/TM-2012/518). Available from https://www.nrc.gov/docs/ML1320/ML13204A296.pdf.
  • 29. Darnowski, P., Ignaczak, P., Obrębski, P., Stępień,M., & Niewiński, G. (2018). Simulations of the AP1000-based reactor core with SERPENT computer code. Arch. Mech. Eng., LXV, 295–325. doi: 10.24425/124484.
  • 30. New York Power Authority. (2000, January 18). New York Power, Indian Point 3 Nuclear Power Plant –Cycle 11 Physics Test Report. Available from https://www.nrc.gov/docs/ML0036/ML003679481.pdf.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d70f36b2-8261-4dce-b3b1-8c9a109f9992
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.