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NoSQL databases become more and more popular, not only in typical In-

ternet applications. They allow to store large volumes of data (so called big 

data), while ensuring fast retrieving and fast appending. The main disad-

vantage of NoSQL databases is that they do not use relational model of data 

and usually do not offer any declarative query language similar to SQL. This 

raises the question how NoSQL databases can be used for OLAP processing 

and other Business Intelligence tasks. In the paper the author presents the 

most common types of NoSQL databases, describes MapReduce paradigm 

and discusses models of OLAP processing for such databases. Finally some 

preliminary results of aggregation performance in non-relational environment 

are presented. 
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1. Introduction 

Since E. Cobb in 1970 proposed relational model of databases it has become a 

dominant standard for data storage in information systems up to present. In this 

period some other models have been proposed, including object oriented and 

XML-based ones. Despite these new models had some advantages over the tradi-

tional relational model they were implemented rather as experimental projects and 

nowadays they are developed mainly by the open source community. Large rela-

tional database management systems (RDBMS) vendors like Oracle and Microsoft 

have incorporated those new ideas into their relational systems. Currently their 
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databases natively support XML data types, MS SQL Server allows for creation 

CLR types that can be used for defining objects, and Oracle allows for defining 

objects in its PL/SQL language (what makes Oracle RDBMS in fact object-

relational database management system). There is no doubt that relational model 

owes its popularity also to the universal, simple, but very powerful SQL language. 

This language, originally developed in IBM, allows a wide range of people, includ-

ing non-programmers like managers, analysts and other decision makers to easy 

interact with data collected in databases. 

The originally intended purpose of relational databases and the SQL language 

was to store data from various transactions occurred in business like orders, bills, 

salaries and make queries to these data. Further development of management in-

formation systems together with the development of computer hardware itself, on 

the one side, and the development of strategic and operational management as a 

response to higher and higher competition on the global market, on another side, 

contributed to the extensive use of RDBMS also in analytical processing. Data 

warehouses which form the basis of online analytical processing (OLAP) can ex-

clusively or partially operate on the same relational model (Relational OLAP - 

ROLAP) and offer dedicated tools to easily transform data from relational data-

bases into desired OLAP structures during extract, transform and load (ETL) pro-

cesses. The details of various OALP architectures will be discussed in chapter 3. 

During the last decade an intensive development of Internet applications could 

be observed. Such platforms like large e-shops or social portals need to process 

often huge amount of data from millions of users in almost real time. This led to 

the development of completely new models of databases. Those models are collec-

tively referred to as NoSQL (from “Not only SQL”). Their main goal is to store 

large quantities of data (so called big data) in a distributed, no-relational system to 

ensure fast access and append operations as well as a fault tolerance. Thus their 

main purpose is similar to the primary purpose of the relational databases – storing 

transaction data. As currently there is a strong demand from business side for 

OLAP and other Business Intelligence solutions, the question arises how NoSQL 

databases can be used in this kind of applications? 

The main goal of the paper is to show whether, and if yes, how various types 

NoSQL databases can be applied for the analytical processing known from con-

temporary Business Intelligence suites. The paper is organized as follows. In the 

second chapter the idea of NoSQL databases is presented together with their taxon-

omy and MapReduce paradigm, as the most effective method of data processing 

for large databases. Next chapter is devoted to the idea of Business Intelligence, 

data warehouses and their architecture in typical environments that are based on 

traditional RDBMS. The author analyses how existing BI systems can deal with 

NoSQL databases, discusses pros and cons of the solutions, and presents some new 
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concepts in this field. Finally, the author presents some results of experiments with 

aggregation queries typical for OLAP and possible ways of their improvement. 

2. NoSQL databases and MapReduce paradigm 

Term “NoSQL” database was first used by C. Strozzi in 1998 for his database 

system that did not provide SQL interface. According to his definition “NoSQL is a 

fast, portable, relational database management system without arbitrary limits, 

(other than memory and processor speed) that runs under, and interacts with, the 

UNIX Operating System” [1]. Despite not utilizing SQL language this system was 

in fact a relational database system, but data were stored in ASCII files and could 

be manipulated by regular Unix tools instead of SQL. The “NoSQL” term has been 

rediscovered eleven years later by, among the others, E. Evans [2] who used this 

term in his blog while discussing open source databases of other types than rela-

tional. In this sense NoSQL databases can be seen as “non-relational, distributed, 

open-source and horizontally scalable” [3]. Thus original sense of “NoSQL” term 

meaning a relational database system without SQL language has change to a non-

relational database system that is not like a typical SQL database, so the term 

should now be referred to as “Not only SQL”. 

There is no single model of NoSQL database. In fact, any database system 

that satisfies the conditions presented above (at least most of them including pri-

marily to be non-relational) can be classified to NoSQL family. Nosql-database.org 

portal lists the following categories of NoSQL databases [3]: 

 column store, 

 document store, 

 key-value store, 

 graph databases, 

 object oriented databases, 

 XML databases, 

 others like mutlimodel, multidimensional, and mutlivalue databases. 

However, many sources regard only the first four as true NoSQL databases, as 

they are based on new concepts and are the most popular ones. In this paper the 

author will focus mainly on column store and document store models, as the data-

bases utilizing these models are the most important from a business point of view 

and are the most widely used in various applications. Finally, the MapReduce pro-

gramming model for effective processing of large databases will be discussed. 

2.1. Column-oriented model 

In the relational database management systems the data is stored typically in 

rows (tuples). In contrast, a column-oriented database engine (called CDBMS or 
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simply a column store) writes each table attribute in a separate column. For exam-

ple a simple table of customer tuples presented in Fig. 1 could be written in the 

format presented in Fig. 2. 

 

ID Name Address City Phone

1 A Glass Enterprise            212 S Tower                   Centralia        1 360-736-1141      

2 A-1 Mobile 389 Raubuck Rd                Winlock          1 360-262-0216      

3 Abitz W 181 Fredson Rd              Shelton          360-426-1928        

4 Agnew Lumber Co. PO Box 579                    Centralia        360-736-8211         
Figure 1.  A simple table of customers in the relational model 

 

This, of course, is a simplified model. In real implementations more complex 

structures are used, including mixed row-column ones (e.g. in C-Store database), 

data are usually compressed (as there is a lot of redundancy),  and various indexes, 

caching and other techniques are applied to speed up queries. 

 

ID 1,2,3,4

Name A Glass Enterprise, A-1 Mobile, Abitz, Agnew Lumber Co.

Address 212 S Tower, 389 Raubuck Rd, W 181 Fredson Rd, PO Box 579

City Centralia, Winlock, Shelton, Centralia 

Phone 1 360-736-1141, 1 360-262-0216, 360-426-1928, 360-736-8211  
Figure 2.  A simple column store for customers’ data 

 

The idea of column-oriented data storage is not new and dates back to 1970s, 

when the research on transposed files and vertical partitioning was first published 

[4]. The first widely used system that utilized such a model was RAPID system 

built for Statistics Canada in 1976. A decade later the advantage of the decomposed 

storage model (DSM) over the row-wise storage (NSM) has been shown [5]. Nev-

ertheless for many years the only one column-oriented database system commer-

cially available was Sybase IQ. The situation has changed in a recent few years as 

many open source as well as commercial products have been released. The most 

popular open source projects that are able to store data in columns (many of them 

are also capable to store data in rows) are: 

 Apache Cassandra – initially developed in Facebook, 

 C-Store – first comprehensive design description of column store by 

researchers from few American universities, including MIT, 

 HBase – running on the top of Hadoop; currently used for Facebook 

messaging system, 

 Google Bigtable – data are indexed by triples <row, column, 

timestamp>, but  tables are stored on the basis of column families. 
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The main advantages of column store systems over traditional RDBMS in-

clude first of all [6]: 

 improved bandwith utilization, as access is necessary only for tables 

with those attributes that are required by a query, 

 improved data compression, as attribute values from the same domain 

compress better than for mixed type values, 

 improved code pipelining (instructions per cycle), as data can be ac-

cessed directly in an iterative way, not through tuple-based interface, 

 improved cache storage, as caching only chosen attribute tables re-

quires less space than caching whole tuples. 

The main disadvantage of column stores is the cost of tuple reconstruction. The 

higher number of attributes is engaged in a query the slower is the answer. This, 

however, can be improved by using in-memory cache or by utilizing SSD drives in 

database servers. It is also worth to notice that OLAP processing and other Busi-

ness Intelligence methods usually require a limited number of attributes in a time. 

2.2. Document-oriented model 

Databases storing user data in the form of documents are the flagship of the 

NoSQL family and are known simply as document stores. Although documents in 

such databases can be written in almost any format (e.g. Word or PDF), the highest 

number of possibilities is offered by semi-structured formats like XML, YAMSL, 

JSON (or its binary version BSON). Although databases using XML documents 

first appeared on the market (the are referred to as native XML databases), but 

nowadays the most popular document stores use JSON (JavaScript Object Nota-

tion) as a document format, as its structure is significantly less complex than XML 

and the documents occupy less storage space. The most popular JSON/BSON 

stores are: CouchDB, MongoDB and OrientDB. Fig. 3 presents a record from the 

table of customers that was considered earlier written in a simple JSON format. 

 
{  "id": 1, 

   "name": "A Glass Enterprise", 

   "address": { "street": " 212 S Tower", "city": "Centralia"}, 

   "phone": " 1 360-736-1141" } 

Figure 3.  JSON record containing customer data. Author’s own preparation 

 

In this case the data is stored in tuples, like in the relational database, but in 

less rigid format. As values are always stored together with their key, the structure 

of rows can be changed in successive rows. A “schema-free” model allows to easi-

ly adjust a database to the changing information needs of business analytics. 
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The other advantages of document stores include: 

 rich data structures – document in a store can represent objects or ar-

rays, thus no ORM (object relational mapping) is required, 

 better performance – data are usually stored in a single table or they 

are joined in memory, so traditional, time-consuming JOINS are un-

necessary and usually not supported, 

 horizontally scalable – document store works similar to distributed 

hash tables, and it can be scaled easily for a large number of nodes. 

The main disadvantage of document stores is that they usually do not provide 

any declarative language for data manipulation (only OrientDB has SQL, but with-

out support for JOIN clauses). Data processing requires to use some procedural 

language, so programming skills are needed in order to process data collected in 

such databases. However, this lets to write more complex queries that operate on a 

single row (like cursors in RDBMS). This ability can be applied to Business Intel-

ligence tools for developing new kind of analysis or to improve existing ones. 

2.3. MapReduce framework 

 Although MapReduce is not a database model,  it plays a very important role 

in today’s NoSQL databases. MapReduce has been developed at Google as a “pro-

gramming model and an associated implementation for processing and generating 

large data sets” [7]. Although the idea is not entirely new, simple and easy to use 

MapReduce framework (sometimes called a paradigm) in recent years has become 

a new phenomenon in processing huge amount of data in a distributed environ-

ment. To use the framework two functions have to be defined: the map function, 

responsible for mapping key-values pairs coming from input data into some other 

key-values pairs: 

Map(K, V) → list (K’, V’), 

and the reduce function, responsible for reducing values (first they are sorted and 

grouped on the basis of new keys), and producing the final output: 

Reduce(K’, list(V’)) → list (V’). 

Jobs of mapping and reducing can be divided into smaller jobs, hence the cal-

culations can be done in parallel by many nodes. A basic MapReduce flow is pre-

sented in Fig. 4. 

 The MapReduce framework is proprietary of Google Inc., but there are open 

source solutions offering similar approach, and among them, the best known and 

widely used is Apache Hadoop. From the Business Intelligence point of view map 

and reduce platforms like Hadoop can play a crucial role, as thanks to them com-

plex processing of data, like aggregation or filtering, can be done in a very efficient 
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way. Business analysts can gain almost immediate access to tons of very accurate 

data without the need of using traditional, time-consuming ETL processes. In this 

sense such platforms (together with a database like HBase or any other NoSQL 

database that support Hadoop) can be an alternative or at least an important addi-

tion to traditional data warehouses used in today’s Business Intelligence systems.  

 

 
Figure 4.  A basic flow in MapReduce data processing [8] 

 

 The example of such data warehouse is Apache Hive. Although it supports 

SQL-like commands (via HiveQL language) and stores its metadata in traditional 

RDBMS, the queries are translated into map and reduce jobs that are then executed 

on Hadoop platform. 

3. Business Intelligence with NoSQL databases 

 Term Business Intelligence was first introduced in 1958 by IBM researcher H. 

P. Luhn [9]. One of the fathers of contemporary BI systems, H. Dresner from Gart-

ner Research, in 1989 defined BI as “a broad category of software and solutions for 

gathering, consolidating, analysing and providing access to data in a way that lets 

enterprise users make better business decisions” [10]. However, from a technical 

point of view, a definition provided by E. Turban et al. can be seen as more pre-

cise: “An umbrella term that encompasses tools, architectures, databases, data 

warehouses, performance management, methodologies, and so forth, all of which 

are integrated into a unified software suite” [11]. The model of data delivery in a  

typical BI platform is shown in Fig. 5. 

 The core of each Business Intelligence system is a data warehouse (DW). Dur-

ing ETL (extract, transform and load) processes the data warehouse is loaded with 

data coming from ERP, CRM and other enterprise systems as well as databases 
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(usually RDBMS), and, if necessary, from any other source like spreadsheet files 

or flat files. Data in the warehouse are organized in a special form that will be pre-

sented later in the chapter. Once the data warehouse is loaded and updated, busi-

ness analysts can perform some OLAP analysis, use data mining tools, or simply 

build reports tailored to their needs. ELT tools, data warehouse, analytical and 

reporting tools together constitute a BI platform (called often a BI suite). 

 

 
Figure 5.  Typical BI architecture [12] 

 

3.1. Data warehouses and OLAP servers architecture 

Warehouses can use different structures, but typically they have at least three 

layers: staging, integration and access. Staging layer is responsible for storing a 

raw data extracted from source databases and flat files. In the integration layer data 

is integrated and transformed into an organized structure (data warehouse data-

base), where data is usually arranged into dimensions and facts. Finally, the access 

layer is responsible for delivering data to end users.  

 The most widely used analysis in Business Intelligence is OLAP (on-line an-

alytical processing). Typical OLAP operations include rollup (increasing the level 

of aggregation) and drill-down (decreasing the level of aggregation or increasing 

detail) along one or more dimension hierarchies, slice and dice (selection and pro-

jection), and pivot (re-orienting the multidimensional view of data) [13]. To per-

form OLAP operations quickly usually a special OLAP server is used either within 

the data warehouse or as a separate solution.  

There are two main OLAP architectures: ROLAP (Relational OLAP) that 

stores analytical data in RDBMS and MOLAP (Multidimensional) that stores data 

in an optimized multi-dimensional arrays. Each architecture has some advantages 

over the another. ROLAP technology is generally better suited for models with 

very high credibility of dimensions (millions or more), and when no-aggregatable 

facts (like texts) are used. MOLAP generally performs better in typical OLAP ap-
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plications than ROLAP [14], but it requires pre-processing (load from OLTP data-

base or data warehouse) that can last for a long time. Load times in ROLAP are 

usually much shorter than in MOLAP and the server is more scalable, however, 

ROLAP is evidently slower especially with respect to aggregated data. To over-

come this problem aggregations are stored in RDBMS as materialized views or as 

dedicated tables. This in turn requires a careful design of ETL process, because 

aggregate operations that were not previously cached can be a very time consum-

ing. The advantages of both ROLAP and MOLAP models have been combined in 

HOLAP (Hybrid OLAP) model. 

According to some business analysts current Business Intelligence platforms 

and data warehouses do not cover all the data necessary for decision making in 

today’s complex economic environment. Big volumes of data (so called “big data”) 

cannot be processed by traditional warehouses and OLAP servers that base on 

RDBMS solutions. Instead of them the solutions originated from the NoSQL 

movement like MapReduce (Hadoop), Hive, Pig or jaql should be applied.  

3.2. Integration of NoSQL databases with BI platforms 

Business Intelligence platforms supplied by the top vendors usually do not in-

tegrate with NoSQL databases, however, some of them (e.g. Oracle) provide a 

native access to Apache Hive. Instead of this, big vendors have recently started to 

provide their own NoSQL solutions (Windows Azure Storage, Oracle NoSQL) that 

in the future can probably be integrated with their existing  BI platforms. Alterna-

tively open source BI platforms can be used. The most popular ones are Jaspersoft 

and Pentaho. Both of them can natively read the data from the most popular 

NoSQL databases like Cassadra or MongoDB by their data integration (ETL) tools 

and reporting servers.  

Also both platforms use Mondrian (officially called Pentaho Analysis Ser-

vices Community Edition) as an OLAP server. A simplified architecture of Mon-

drian server is shown in Fig. 6. 
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Cubes 
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Analytical tools

Cube modelling tool

MDX

 
Figure 6.  A simplified architecture of Mondrian server (based on [15]) 
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Mondrian OLAP server stores cube schemas in XML files that can be mod-

eled by client tools like Pentaho Schema Workbench and its engine is based on 

ROLAP model. This engine can communicate only with SQL language, so the data 

from NoSQL databases cannot be processed directly. First they need to be loaded 

into the data warehouse that is based on RDBMS like in traditional BI platforms. 

There are plans, expressed by some Mondrian community members, to give the 

users a possibly to replace SQL database in Mondrian with HBase or MongoDB. 

Basically the same architecture as in Mondrian is used in much more light-

weight solutions like e.g. an OLAP framework architecture written in Python (Cu-

bes) [14]. The architecture of such a lightweight server is shown in Fig. 7.  

 

SQL 

Database

Cubes

Aggregation 

browser
Slicer

Application

HTTP request JSON
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Figure 7.  A simplified architecture a lightweight OLAP framework (based on [16]) 

 

A client sends a request for some cell of the cube to the server (called in this 

case a slicer), the server uses appropriate aggregation browser backend to compute 

this request and a result in JSON format is sent back to the client. Although many 

different aggregation browsers have been originally planned, including a Mon-

goDB browser, it has not been implemented yet. The only aggregation browser is 

currently “SQL denormalized” that stores the data from converted star schema in 

the form of  a deformalized views and tables.  

3.3. New OLAP model using MapReduce framework 

Big data stored in NoSQL databases can be processed during ETL processes 

using map and reduce functions defined within Hadoop platform (both Pentaho and 

Jaspersoft BI platforms have such ability). Typical scenario for big data analysis is 

currently to use e.g. Hive in Hadoop environment (for OLTP) and a ROLAP tool 

for data analysis. Sometimes such solution may occur not enough. If more a lot of 

data is added to the Hive warehouse in almost a real time, the aggregated data 

stored in RDBMS for OLAP purposes may quickly become obsolete or at least 

inaccurate. Moreover, when really huge data sets are used, the queries performed 

on partially aggregated data can be too slow for OLAP browsing. 
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Thus, the idea is to use MapReduce paradigm not only on OLTP side, but also 

for OLAP processing. Map and reduce functions can be programmed relatively 

easy using HQL provided by Hive or Pig Latin language. 

Also recently some new projects focusing strictly on OLAP processing like 

e.g. olap4cloud [16] has emerged. Olap4cloud is based on HBase and Hadoop, but 

besides MapReduce it uses data defragmentation, intensive indexing and preaggre-

gations. The developers of olap4cloud performed the test in which aggregation 

query was executed with 300 million rows of randomly generated 3 dimensions 

with values in [0..10], [0..100] and [0..10000] ranges and 3 measures with values in 

[0..100], [0..1000] and [0..10000] [16]. The goal of the query was to sum few facts 

across one dimension and filtering them on the basis of other two dimensions. The 

query that was used in tests is shown in Fig. 8. 

 
select d3, sum(m1), sum(m2), sum(m3) from facts 

where d1 = 1 and d2 = 1 group by d3 

Figure 8.  Test query for Olap4cloud performance experiments [17] 

 

The test was run on few machines with average speed of processor 2 GHz and 

average RAM size of 1.7 GB. Unfortunately the number of nodes has not been 

specified by the authors. Nevertheless the obtained results are interesting. For Hive 

platform query executed in 23 minutes, while for olap4cloud it took only 26 sec-

onds, when no pre-aggregations had been used, and impressive 5 seconds with pre-

aggregations [17]. 

To compare those results with a traditional RDBMS the author imported the 

same 300 million rows into MS SQL 2008 Server that was run on a single machine 

with 8GB RAM and 2.0GHz quad core processor. Although the import process 

itself took for 30 minutes (the import was done by SQL Server Integration Services 

– ETL tool for MS SQL Server) the query executed in 135 seconds for the first run 

and only 12 seconds for the subsequent runs (SQL Server cached the data). This 

can simulate a simple ROLAP.  

Additionally the author has also tested a new aggregation mechanism, that 

does not require the map and reduce functions written in an explicit way, and that 

was introduced in MongoDB 2.2. Fig. 9 presents the code for MongoDB expres-

sion that is equivalent to the query presented in Fig. 8. 

 
db.bigdata.group({key:{d3:true}, cond: { d1:1,d2:1 }, reduce: 

function(obj,prev) { prev.m1sum += obj.m1;prev.m2sum += obj.m2; 

prev.m3sum += obj.m3;},initial: { m1sum: 0, m2sum: 0, m3sum: 0}});  

Figure 9.  Test query written as MongoDB expression 

 

The query initially took 10 minutes to complete, but after indexes for “d1” 

and “d2” were created the query time was reduced to only 23 seconds. In the latter 
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case it was only two time slower than for MS SQL server. It can be farther im-

proved by using MongoDB port for Hadoop to speed up map and reduce functions 

that are then performed on many nodes.  

4. Conclusions 

Experimental projects with non-relational databases developed at Google, Fa-

cebook, Yahoo or Adobe slowly begin to reach their maturity and now are used not 

only in garage projects, but are seen as a significant competition for the traditional 

RDBMS databases. Huge amounts of data are no longer restricted to meteorologi-

cal, geographical, astronomical, biological or physical applications, but can be 

found also in today’s business. A lot of sensors, logs, media devices, tracking sys-

tems generate even petabytes of data, so called big data (e.g. Google processes 

about 24 petabytes of data per day). Such data should be analyzed in tools corre-

sponding to the BI tools used for traditional transactional data stored in RDMBS. 

Currently most of the BI platforms and other OLAP-related tools that are ca-

pable to deal with huge NoSQL databases reproduce the well-known ROLAP 

model existing in traditional BI platforms. Although the MapReduce paradigm can 

be used, but only on OLTP side, while OLAP side is still dominated by RDBMS. 

There are two main reasons for that. First is the SQL language and well-known 

optimization techniques such as materialized views, which proved their efficiency 

for OLAP purposes. The second, even more important reason, is that traditional 

models can be easily applied to both non-relational and relational environments. In 

fact, we are at the stage where traditional warehouses are supplemented with big 

data platforms (like Hive) and coexist in one universal BI platform. However, 

sometimes this may be not enough for business needs and traditional approach for 

OLAP should be replaced with a new one, based on techniques like MapReduce. 

The results presented in some experiments are quite optimistic and lead us to be-

lieve that new approach for BI platforms can be put into practice in near future. 
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