PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Manoeuvring areas to adapt ACAS for the maritime domain

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rapidly increasing numbers of ships and ship sizes pose an ever-growing challenge to the maritime industry. Although statistics indicate improved levels of safety in the industry which carries 90% of the world’s trade, the risk of navigational accidents, among other issues, remains a prime concern and priority (EMSA, 2010; 2014). In order to address these concerns, the authors turned to another high-risk industry for inspiration. Specifically, they turned to the aviation industry, which has often been used as a source of comparisons and ideas by researchers in the maritime domain. Keeping up with the trend, the authors of this paper turn to a tried-and-tested system used widely in modern aviation: the Airborne Collision Avoidance System (ACAS). The prime idea behind ACAS is to construct two virtual 3D zones around an aircraft. These zones are dynamic, and depend on the manoeuvring characteristics of a given aircraft. If the system detects an “intruder” (another aircraft) in either of the two well-defined virtual zones, it provides warnings and/or instructions to pilots of both aircraft to take certain precautionary or emergency measures. In the current paper, the authors explore whether or not such a system is feasible for use in the maritime domain and, if so, how. The paper provides a detailed analysis of the potential benefits and drawbacks of using an ACAS-like system onboard vessels. It also discusses possible means of implementation and integration with current equipment, and explores how the introduction of e-navigation may impact the proposed solution.
Rocznik
Strony
39--47
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
  • World Maritime University, Marisa Research Group 29 Citadellsvägen, 20124 Malmö, Sweden
autor
  • World Maritime University, Marisa Research Group 29 Citadellsvägen, 20124 Malmö, Sweden
autor
  • World Maritime University, Marisa Research Group 29 Citadellsvägen, 20124 Malmö, Sweden
  • World Maritime University, Marisa Research Group 29 Citadellsvägen, 20124 Malmö, Sweden
autor
  • Wismar University, Faculty of Engineering, Department of Maritime Studies, ISSIMS, 31 Richard-Wagner St., 18119 Rostock-Warnemünde, Germany
autor
  • Wismar University, Faculty of Engineering, Department of Maritime Studies, ISSIMS, 31 Richard-Wagner St., 18119 Rostock-Warnemünde, Germany
autor
  • Wismar University, Faculty of Engineering, Department of Maritime Studies, ISSIMS, 31 Richard-Wagner St., 18119 Rostock-Warnemünde, Germany
autor
  • Wismar University, Faculty of Engineering, Department of Maritime Studies, ISSIMS, 31 Richard-Wagner St., 18119 Rostock-Warnemünde, Germany
Bibliografia
  • 1. BALDAUF, M., BENEDICT, K., FISCHER, S., MOTZ, F. & SCHRÖDER-HINRICHS, J.-U. (2011) Collision avoidance systems in air and maritime traffic. in: Proceedings of the Institution of Mechanical Engineers. Part O: Journal of Risk and Reliability. 225 (3). pp. 333–343.
  • 2. BENEDICT, K., KIRCHHOFF, M., GLUCH, M., FISCHER, S., SCHAUB, M., BALDAUF, M. & KLAES S. (2014) Simulation Augmented Manoeuvring Design and Monitoring – a New Method for Advanced Ship Handling. TransNav – International Journal on Marine Navigation and Safety of Sea Transportation. 8:1. pp. 131–141.
  • 3. BENEDICT, K., MÜLLER, R., BALDAUF, M., DEHMEL, T. & HENSEL, T. (1994) Functions of the System – Collision Avoidance. EURET 1.3 TAIE – Task 5 Work package Report. Rostock: Hochschule Wismar, Dept. of Maritime Studies.
  • 4. COCKCROFT, A.N. & LAMEIJER J.N.F. (2012) A Guide to the Collision Avoidance Rules: International Regulations for Preventing Collisions at Sea. 7th Edition. Oxford: Elsevier Butterworth-Heinemann.
  • 5. EMSA (2010). Annual Overview of Marine Casualties and Incidents. Lisbon (Portugal): European Maritime Safety Agency.
  • 6. EMSA (2014). Annual Overview of Marine Casualties and Incidents. Lisbon (Portugal): European Maritime Safety Agency.
  • 7. EUROCONTOL (2014) Overview of ACAS II (Incorporating version 7.1). Document Version 3.2. Available from: www.skybrary.aero/bookshelf/books/1445.pdf
  • 8. GÖHLER, U.D. (1983) Estimation of Expectation Areas of Ships considering resistance changes, due to yaw angle and according to Model experiments. Schiffbauforschung. 4. pp. 235–246.
  • 9. IMO (1972): Convention on the International Regulations for Preventing Collisions at Sea. COLREG, 15.07.1977.
  • 10. IMO (2007). Revised performance standards for integrated navigation systems (INS). MSC.252(83). London: International Maritime Organization.
  • 11. INOUE, K. (1990) Concept of Potential Area of Wateras an Index for Risk Assessment in Ship Handling. Journal of Navigation. 43:1. pp. 1–7.
  • 12. KRÜGER, C.-M., BENEDICT, K. & BALDAUF, M. (2014) MUNIN D5.5 Support system for remote manoeuvring concept. Rostock, Germany: Wismar University, Department of Maritime Studies.
  • 13. MONTEWKA, J., KRATA, P. (2014) Towards the assessment of a critical distance between two encountering ships in open waters. European Journal of Navigation. 12(3). pp. 7–14.
  • 14. NAKANO, T. & HASEGAWA. K. (2012) An Attempt to Predict Manoeuvring Indices Using AIS Data for Automatic OD Data Acquisition. 9 th IFAC Conference on Manoeuvring and Control of Marine Craft.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d70d5c3d-9e8f-4e4e-afdb-5f6a7d409d14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.