Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Spiekanie mieszanek nanoproszków węglików wolframu metodą elektrokonsolidacji
Języki publikacji
Abstrakty
The paper presents theoretical and experimental results in the field of the manufacturing of cemented tungsten carbide materials. The important issue of avoiding any additional substances like plasticizers was challenged in order to reach the maximal possible density of sintered material while keeping its purity. To solve the problem, the electroconsolidation method of hot pressing supported by direct current was applied. The respective apparatus was constructed that enabled WC nanopowders to be sintered under pressure and high temperature during a very short time of ca. 3 minutes. In the experiments, because of the short heating time, grain size of the sintered bulk WC increased insignificantly, in general, remaining smaller than 1 μm. Similarly, sintering under hot pressing with direct current, a mixture of 3% by weight Y2O3 stabilized ZrO2 and 50% by weight WC, produced a fine structure with a uniformly distributed WC grains. The applied electric field led to the formation of a temperature gradient around the pores, with a favourable impact on the compaction of large pores and an increase in the final density of the bulk material. The experimental research confirmed that the main mechanism of the densification of nanodispersed powders of tungsten monocarbide was a locally inhomogeneous diffusion-viscous flow with intergranular slipping.
W artykule przedstawiono rozważania teoretyczne i wyniki badań eksperymentalnych dotyczących wyrobów z węglików wolframu uzyskiwanych metodą spiekania. Podjęto próbę rozwiązania jednego z problemów, jakim jest obecność substancji uplastyczniających, która wspomagając proces spiekania jednocześnie utrudnia uzyskanie maksymalnej gęstości gotowego materiału. W celu rozwiązania tego zagadnienia zastosowano metodę eloktrokonsolidacji, polegającą na spiekaniu wspomaganym przepływem prądu elektrycznego. Skonstruowana aparatura umożliwia spiekanie proszków węglika wolframu w bardzo krótkim czasie rzędu 3 minut. W badaniach eksperymentalnych wykazano, że krótki czas oddziaływania wysokiej temperatury na wzrost ziaren w strukturze spieku jest nieznaczny i rozmiary ziaren pozostają na poziomie 1 μm. Podobnie mieszanka 3% masy Y2O3 stabilizowanego ZrO2 z 50% masy WC umożliwiła uzyskanie spieku o strukturze zawierającej równomiernie rozłożone ziarna węglika wolframu. Zastosowanie prądu elektrycznego powoduje wytworzenie gradientu temperatury wokół porów, korzystnie wpływając na proces kompakcji i zwiększając wynikową gęstość spieku. Wyniki eksperymentów potwierdziły główne założenia stosowane w opisie teoretycznym kompakcji nanodyspersyjnych proszków węglika wolframu.
Rocznik
Tom
Strony
67--73
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Ukrainian State University of Railway Transport, Kharkov, Ukraine
autor
- Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland
autor
- V.N. Karazin Kharkiv National University, Kharkov, Ukraine
autor
- Ukrainian State University of Railway Transport, Kharkov, Ukraine
autor
- Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland
autor
- Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland
Bibliografia
- 1. Koch C.C. (ed.): Nanostructured Materials: Processing, Properties, and Applications. 2nd edition, Norwich, NY: William Andrew Inc., 2007.
- 2. Ciocoiu M.: Materials Behavior: Research Methodology and Mathematical Models. Waretown, NJ: Apple Academic Press Inc., 2018.
- 3. Cain M., Morell R.: Nanostructured ceramics: a review of their potential. Applied Organometallic Chemistry, 2001, 15, pp. 321-330.
- 4. Camargo N., Bellini O.J., Gemelli E., Tomiyama M.: Synthesis and characterization of nanostructured ceramics powders for biomedical applications. Matéria (Rio J.), 2007, 12(4), pp. 574-582.
- 5. Makhlouf A.S.H., Scharnweber D.: Handbook of Nanoceramic and Nanocomposite Coatings and Materials. Amsterdam: Elsevier-BH, 2015.
- 6. Guglya A., Kalchenko A., Solopikhina E., Vlasov V., Lyubchenko E.: Nanocrystalline Porous Thin Film VNx Hydrogen Absorbents: Method of Production, Structure and Properties. Journal of Advances in Nanomaterials, 2016, 1(1), pp. 1-10.
- 7. Andrievsky R.A., Glezer A.M.: Dimensional effects in nanocrystalline materials. 2. Mechanical and physical properties. Fizika metallov i metallovedenie [Physics of Metals], 2000, 89(1), pp. 91-112 [in Russian].
- 8. Gleiter H.: Nanostructured materials: basic concepts and microstructure. Acta Materialia, 2000, 48(1), pp. 1-29.
- 9. Kodash V.Y., Gevorkian E.S.: Tungsten carbide cutting tool materials, 2003, United States Patent No. 6,617,271.
- 10. Gevorkian E.S., Gutsalenko Y.G., Chishkala V.A., Krishtal A.P.: Sintering of Al2O3 and WC powders activated by electric field. Proceedings of 5th International Conference “Research and Development in Mechanical Industry” RaDMI, Vrianska Banja, Serbia and Montenegro, September 2005, pp. 694-696.
- 11. Wessel J.K. (ed.): The Handbook of Advanced Materials: Enabling New Designs. Hoboken, NJ: Wiley-Interscience, 2004.
- 12. Pittari J.J., Murdoch H.A., Kilczewski S.M.: Sintering of tungsten carbide cermets with an iron-based ternary alloy binder: Processing and thermodynamic considerations. International Journal of Refractory Metals and Hard Materials, 2018, 76, pp. 1-11.
- 13. Gevorkian E., Lavrynenko S., Rucki M., Siemiątkowski Z., Kislitsa M.: Ceramic cutting tools out of nanostructured refractory compounds. International Journal of Refractory Metals and Hard Materials, 2017, 68, pp. 142-144.
- 14. Luo W., Liu Y., Luo Y., Wu M.: Fabrication and characterization of WC-AlCoCrCuFeNi high-entropy alloy composites by spark plasma sintering. Journal of Alloys and Compounds, 2018, 754, pp. 163-170.
- 15. Balima F., Bellin F., Michau D., Viraphong O., Poulon-Quintin A., Chung U.-Ch., Dourfaye A., Largeteau A.: High pressure pulsed electric current activated equipment (HP-SPS) for material processing. Materials & Design, 2018, 139, pp. 541-548.
- 16. Chuvil’deev V.N., Blagoveshchenskiy Yu.V., Nokhrin A.V., Boldin M.S., Sakharov N.V., Isaeva N.V., Shotin S.V., Belkin O.A., Popov A.A., Smirnova E.S., Lantsev E.A.: Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis. Journal of Alloys and Compounds, 2017, 708, pp. 547-561.
- 17. Sabzi M., Mousavi Anijdan S.H., Ghobeiti- -Hasab M., Fatemi-Mehr M.: Sintering variables optimization, microstructural evolution and physical properties enhancement of nano-WC ceramics. Journal of Alloys and Compounds, 2018, 766, pp. 672-677.
- 18. German R.M.: Consolidation Techniques. In: Sarin V.K. (ed.): Comprehensive Hard Materials. Vol. 1, New York: Elsevier, 2014, pp. 237-263.
- 19. Liu Y., Wang Z., Sun Q.: Tribological behavior and wear mechanism of pure WC at wide range temperature from 25 to 800°C in vacuum and air environment. International Journal of Refractory Metals and Hard Materials, 2018, 71, pp. 160-166.
- 20. Eriksson M., Radwan M., Shen Zh.: Spark plasma sintering of WC, cemented carbide and functional graded materials. International Journal of Refractory Metals and Hard Materials, 2013, 36, pp. 31-37.
- 21. Quach D.V., Groza J.R., Zavaliangos A., AnselmiTamburini U.: Fundamentals and applications of field/current assisted sintering. In: Fang Zh.Z. (Ed.): Sintering of Advanced Materials. Cambridge: Woodhead Publishing Ltd., 2010, pp. 249-275e.
- 22. Schneider J.A., Groza J.R., Garcia M.: Surface Effects in Field-Assisted Sintering. Journal of Materials Research, 2001, 16(1), pp. 286-292.
- 23. Gevorkian E., Lavrynenko S., Rucki M.: Structure formation of hot pressed Al2O3 powders under the alternating electric current: experimental observations. Advanced Materials Letters, 2017, 8(10), pp. 945-949.
- 24. Gevorkyan E., Lavrynenko S., Rucki M., Siemiątkowski Z., Kislitsa M.: Preparation of nanostructured materials by electrical sintering. Proceedings of the 7th International Conference on Mechanics and Materials in Design (M2D2017), Albufeira/Portugal June 2017. Editors J.F. Silva Gomes and S.A. Meguid, pp. 663-666.
- 25. Raychenko A.I.: Fundamentals of the process of sintering powders by passing electric current. Moskva: Metalurgia, 1987 [in Russian].
- 26. Scarlat O., Mihaiu S., Aldica G., Zaharescu M., Groza J.R.: Enhanced Properties of Tin(IV) Oxide Based Materials by Field-Activated Sintering. Journal of the American Ceramic Society, 2004, 86(6), pp. 893-897.
- 27. Groza J., Curtis J., Kramer M.: Field Assisted Sintering of Nanocrystalline Titanium Nitride. Journal of the American Ceramic Society, 2000, 83, pp. 1281-1283.
- 28. Gevorkyan E.S., Semchenko G.D., Kislitsa M.V., Chishkala V.A., Vovk S.R., Vovk R.V.: Synthesis by method of electro consolidation of SiC and WC, ZrO2 nanocomposite materials with the high mechanical properties. Physics, 2017, 24, pp. 32-36.
- 29. Ünal N., Kern F., Öveçoğlu M.L., Gadow R.: Influence of WC particles on the microstructural and mechanical properties of 3mol% Y2O3 stabilized ZrO2 matrix composites produced by hot pressing. Journal of the European Ceramic Society, 2011, 31(13), pp. 2267-2275.
- 30. Niu Zh., Jiao F., Cheng K.: An innovative investigation on chip formation mechanisms in micro-milling using natural diamond and tungsten carbide tools. Journal of Manufacturing Processes, 2018, 31, pp. 382-394.
- 31. Krolczyk G., Legutko S., Stoic A.: Influence of cutting parameters and conditions onto surface hardness of duplex stainless steel after turning process. Tehnicki Vjesnik - Technical Gazette, 2013, 20(6), pp. 1077-1080.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d702da3a-54e5-433e-99f1-16b3f1fe5a68