PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensitivity analysis of main parameters of pressurized SOFC hybrid system

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a sensitivity analysis of a pressurized SOFC–HS system. The systems are divided into two groups: atmospheric and pressurized. The main parameter of such systems are indicated and commented. The comparison of various configurations is shown in a view of efficiency obtained. The ultra high efficiency (65% HHV, 72% LHV) of electricity production seems to be possible by systems like these.
Rocznik
Strony
115--122
Opis fizyczny
Bibliogr. 81 poz., rys., tab., wykr.
Twórcy
  • Department of High Temperature Electrochemical Processes (HiTEP), Institute of Power Engineering Augustowka 36, 02-981 Warsaw, Poland
Bibliografia
  • [1] M. Afrand, A. A. Nadooshan, M. Hassani, H. Yarmand, M. Dahari, Predicting the viscosity of multi-walled carbon nanotubes/water nanofluid by developing an optimal artificial neural network based on experimental data, INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER 77 (2016) 49–53. doi:10.1016/j.icheatmasstransfer.2016.07.008.
  • [2] M. A. Ansari, S. M. A. Rizvi, S. Khan, Optimization of Electrochemical Performance of a Solid Oxide Fuel Cell using Artificial Neural Network, in: 2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), DMI Coll Engn; IEEE DMI Coll Student Branch, 2016, pp. 4230–4234, International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Palnchur, INDIA, MAR 03-05, 2016.
  • [3] M. Kamvar, M. Ghassemi, M. Rezaei, Effect of catalyst layer configuration on single chamber solid oxide fuel cell performance, APPLIED THERMAL ENGINEERING 100 (2016) 98–104. doi:10.1016/j.applthermaleng.2016.01.128.
  • [4] X. Lv, C. Gu, X. Liu, Y. Weng, Effect of gasified biomass fuel on load characteristics of an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 41 (22) (2016) 9563–9576. doi:10.1016/j.ijhydene.2016.04.104.
  • [5] A. Majedi, A. Abbasi, F. Davar, Green synthesis of zirconia nanoparticles using the modified Pechini method and characterization of its optical and electrical properties, JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 77 (3) (2016) 542–552. doi:10.1007/s10971-015-3881-3.
  • [6] D. Marra, C. Pianese, P. Polverino, M. Sorrentino, Models for Solid Oxide Fuel Cell Systems Exploitation of Models Hierarchy for Industrial Design of Control and Diagnosis Strategies Introduction, in: MODELS FOR SOLID OXIDE FUEL CELL SYSTEMS: EXPLOITATION OF MODELS HIERARCHY FOR INDUSTRIAL DESIGN OF CONTROL AND DIAGNOSIS STRATEGIES, Green Energy and Technology, 2016, pp. 1–26. doi:10.1007/978-1-4471-5658-1_1.
  • [7] M. Mehrpooya, H. Dehghani, S. M. A. Moosavian, Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system, JOURNAL OF POWER SOURCES 306 (2016) 107–123. doi:10.1016/j.jpowsour.2015.11.103.
  • [8] R. Peters, R. Deja, M. Engelbracht, M. Frank, V. N. Nguyen, L. Blum, D. Stolten, Efficiency analysis of a hydrogen-fueled solid oxide fuel cell system with anode off-gas recirculation, JOURNAL OF POWER SOURCES 328 (2016) 105–113. doi:10.1016/j.jpowsour.2016.08.002.
  • [9] M. Skrzypkiewicz, M. Wierzbicki, M. Stepien, Solid Oxide Fuel Cells coupled with a biomass gasification unit, in: Filipowicz, M and Dudek, M and Olkuski, T and Styszko, K (Ed.), 1ST INTERNATIONAL CONFERENCE ON THE SUSTAINABLE ENERGY AND ENVIRONMENT DEVELOPMENT (SEED 2016), Vol. 10 of E3S Web of Conferences, Head Minist Sci & Higher Educ; Minist Energy; Minist Environm; Natl Fund Environm Protect & Water Management; Energy Regulatory Off; Natl Ctr Res & Dev; Head Malopolska Prov Off; Marshal Malopolska Reg; Municipality Krakow; Natl Contact Point; AGH UST Rector; EDFPolska; Cieplo Krakowa; CC Poland Plus; MetalERG; RWE Polska; Fdn Inst Sustainable Energy; AGH UST, Fac Energy & Fuels, 2016, 1st International Conference on the Sustainable Energy and Environment
  • Development (SEED), Krakow, POLAND, MAY 17-19, 2016. doi:10.1051/e3sconf/20161000115.
  • [10] K. Zouhri, S.-Y. Lee, Tubular SOFC air electrode ohmic overpotential: Parametric and exergy study, ENERGY CONVERSION AND MANAGEMENT 121 (2016) 1–12. doi:10.1016/j.enconman.2016.04.098.
  • [11] H. Jeong, S. Cho, D. Kim, H. Pyun, D. Ha, C. Han, M. Kang, M. Jeong, S. Lee, A heuristic method of variable selection based on principal component analysis and factor analysis for monitoring in a 300 kw mcfc power plant, International Journal of Hydrogen Energy 37 (15) (2012) 11394–11400.
  • [12] E. Arato, E. Audasso, L. Barelli, B. Bosio, G. Discepoli, Kinetic modelling of molten carbonate fuel cells: Effects of cathode water and electrode materials, JOURNAL OF POWER SOURCES 330 (2016) 18–27. doi:10.1016/j.jpowsour.2016.08.123.
  • [13] M. Della Pietra, G. Discepoli, B. Bosio, S. J. McPhail, L. Barelli, G. Bidini, A. Ribes-Greus, Experimental investigation of SO2 poisoning in a Molten Carbonate Fuel Cell operating in CCS configuration, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 41 (41) (2016) 18822–18836, 3rd International Workshop on Molten Carbonates and Related Topics (IWMC), NE Univ, Shenyang, PEOPLES R CHINA, JUN 11-13, 2015. doi:10.1016/j.ijhydene.2016.05.147.
  • [14] L. Duan, L. Yue, T. Feng, H. Lu, J. Bian, Study on a novel pressurized MCFC hybrid system with CO2 capture, ENERGY 109 (2016) 737–750. doi:10.1016/j.energy.2016.05.074.
  • [15] S. Frangini, A. Masi, Molten carbonates for advanced and sustainable energy applications: Part II. Review of recent literature, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 41 (42) (2016) 18971–18994. doi:10.1016/j.ijhydene.2016.08.076.
  • [16] F. Golzar, M. Astaneh, R. Roshandel, A. B. Forough, Reducing CO2 emission from exhaust gases using molten carbonate fuel cells: a new approach, INTERNATIONAL JOURNAL OF AMBIENT ENERGY 37 (4) (2016) 331–340. doi:10.1080/01430750.2014.963206.
  • [17] C. Huang, Y. Pan, Y. Wang, G. Su, J. Chen, An efficient hybrid system using a thermionic generator to harvest waste heat from a reforming molten carbonate fuel cell, ENERGY CONVERSION AND MANAGEMENT 121 (2016) 186–193. doi:10.1016/j.enconman.2016.05.028.
  • [18] P. Jienkulsawad, A. Arpornwichanop, Investigating the performance of a solid oxide fuel cell and a molten carbonate fuel cell combined system, ENERGY 107 (2016) 843–853.doi:10.1016/j.energy.2016.04.072.
  • [19] S. Samanta, S. Ghosh, A thermo-economic analysis of repowering of a 250 MW coal fired power plant through integration of Molten Carbonate Fuel Cell with carbon capture, INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL 51 (2016) 48–55.doi:10.1016/j.ijggc.2016.04.021.
  • [20] E. Audasso, B. Bosio, S. Nam, Extension of an effective MCFC kinetic model to a wider range of operating conditions, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 41 (12) (2016) 5571–5581. doi:10.1016/j.ijhydene.2015.10.152.
  • [21] J. Milewski, M. Wołowicz, A. Miller, R. Bernat, A reduced order model of molten carbonate fuel cell: A proposal, International Journal of Hydrogen Energy 38 (26) (2013) 11565–11575.
  • [22] G. Rey, C. Ulloa, J. Luis Miguez, E. Arce, Development of an ICEBased Micro-CHP System Based on a Stirling Engine; Methodology for a Comparative Study of its Performance and Sensitivity Analysis in Recreational Sailing Boats in Different European Climates, ENERGIES 9 (4). doi:10.3390/en9040239.
  • [23] A. Chmielewski, R. Guminski, J. Maczak, S. Radkowski, P. Szulim, Aspects of balanced development of RES and distributed microcogeneration use in Poland: Case study of a mu CHP with Stirling engine, RENEWABLE & SUSTAINABLE ENERGY REVIEWS 60 (2016) 930–952. doi:10.1016/j.rser.2016.01.131.
  • [24] L. Szablowski, J. Milewski, J. Kuta, K. Badyda, Control strategy of a natural gas fuelled piston engine working in distributed generation system, Rynek Energii (3) (2011) 33–40.
  • [25] D. McLarty, J. Brouwer, C. Ainscough, Economic analysis of fuel cell installations at commercial buildings including regional pricing and complementary technologies, ENERGY AND BUILDINGS 113 (2016) 112–122. doi:10.1016/j.enbuild.2015.12.029.
  • [26] L. Romero Rodriguez, J. M. Salmeron Lissen, J. Sanchez Ramos, E. A. Rodriguez Jara, S. Alvarez Dominguez, Analysis of the economic feasibility and reduction of a building’s energy consumption and emissions when integrating hybrid solar thermal/PV/micro-CHP systems, APPLIED ENERGY 165 (2016) 828–838. doi:10.1016/j.apenergy.2015.12.080.
  • [27] H.Wu, L.-j. Yang, J.-p. Yan, G.-x. Hong, B. Yang, Improving the removal of fine particles by heterogeneous condensation during WFGD processes, FUEL PROCESSING TECHNOLOGY 145 (2016) 116–122. doi:10.1016/j.fuproc.2016.01.033.
  • [28] . Bartela, A. Skorek-Osikowska, J. Kotowicz, Integration of a supercritical coal-fired heat and power plant with carbon capture installation and gas turbine, Rynek Energii 100 (3) (2012) 56–62.
  • [29] R. Laskowski, A. Smyk, A. Rusowicz, A. Grzebielec, Determining the Optimum Inner Diameter of Condenser Tubes Based on Thermodynamic Objective Functions and an Economic Analysis, ENTROPY 18 (12). doi:10.3390/e18120444.
  • [30] M. Wołowicz, J. Milewski, K. Futyma, W. Bujalski, Boosting the efficiency of an 800 mw-class power plant through utilization of low temperature heat of flue gases, in: Applied Mechanics and Materials, Vol. 483, Trans Tech Publ, 2014, pp. 315–321.
  • [31] J. Kotowicz, M. Jurczyk, D.Wecel,W. Ogulewicz, Analysis of Hydrogen Production in Alkaline Electrolyzers, JOURNAL OF POWER TECHNOLOGIES 96 (3) (2016) 149–156.
  • [32] J. Kupecki, J. Jewulski, K. Badyda, Comparative study of biogas and dme fed micro-chp system with solid oxide fuel cell, Applied Mechanics and Materials 267 (2013) 53–56.
  • [33] W. Budzianowski, Sustainable biogas energy in poland: Prospects and challenges, Renewable and Sustainable Energy Reviews 16 (1) (2012) 342–349.
  • [34] P. Krawczyk, Control strategy for ventilation system of sewage sludge solar dryer, JOURNAL OF POWER TECHNOLOGIES 96 (2) (2016) 145–148.
  • [35] A. Skorek-Osikowska, L. Bartela, J. Kotowicz, K. Dubiel, Use of a gas turbine in a hybrid power plant integrated with an electrolyser, biomass gasification generator and methanation reactor, JOURNAL OF POWER TECHNOLOGIES 96 (2) (2016) 73–80.
  • [36] I.-S. Han, C.-B. Chung, Performance prediction and analysis of a PEM fuel cell operating on pure oxygen using data-driven models: A comparison of artificial neural network and support vector machine, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 41 (24) (2016) 10202–10211. doi:10.1016/j.ijhydene.2016.04.247.
  • [37] M. Beltran-Gastelum, M. I. Salazar-Gastelum, R. M. Felix-Navarro, S. Perez-Sicairos, E. A. Reynoso-Soto, S. W. Lin, J. R. Flores-Hernandez, T. Romero-Castanon, I. L. Albarran-Sanchez, F. Paraguay-Delgado, Evaluation of Pt-Au/MWCNT (Multiwalled Carbon Nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell, ENERGY 109 (2016) 446–455. doi:10.1016/j.energy.2016.04.132.
  • [38] L. Barelli, G. Bidini, A. Ottaviano, Part load operation of a sofc/gt hybrid system: Dynamic analysis, Applied Energy 110 (0) (2013) 173 – 189.
  • [39] J. Kupecki, J. Milewski, A. Szczesniak, R. Bernat, K. Motylinski, Dynamic numerical analysis of cross-, co-, and counter-current flow configuration of a 1 kw-class solid oxide fuel cell stack, International Journal of Hydrogen Energy 40 (45) (2015) 15834–15844.
  • [40] M. Santin, A. Traverso, L. Magistri, A. Massardo, Thermoeconomic analysis of sofc-gt hybrid systems fed by liquid fuels, Energy 35 (2) (2010) 1077 – 1083, <ce:title>ECOS 2008</ce:title><xocs:full-name>21st International Conference, on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems</xocs:full-name>.
  • [41] M. Sucipta, S. Kimijima, K. Suzuki, Performance analysis of the SOFC–MGT hybrid system with gasified biomass fuel, Journal of Power Sources 174 (1) (2007) 124 – 135, <ce:title>Hybrid Electric Vehicles</ce:title>.
  • [42] S. Chan, H. Ho, Y. Tian, Multi-level modeling of sofc–gas turbine hybrid system, International Journal of Hydrogen Energy 28 (8) (2003) 889 – 900.
  • [43] T. W. Song, J. L. Sohn, T. S. Kim, S. T. Ro, Performance characteristics of a mw-class sofc/gt hybrid system based on a commercially available gas turbine, Journal of Power Sources 158 (1) (2006) 361 – 367.
  • [44] F. Calise, M. D. d Accadia, A. Palombo, L. Vanoli, Simulation and exergy analysis of a hybrid solid oxide fuel cell (sofc)–gas turbine system, Energy 31 (15) (2006) 3278 – 3299, <ce:title>ECOS 2004 - 17th International Conference on Efficiency, Costs, Optimization, Simulation, and Environmental Impact of Energy on Process Systems</ce:title><xocs:full-name>17th International Conference on Efficiency, Costs, Optimization, Simulation, and Environmental Impact of Energy on Process Systems</xocs:full-name>.
  • [45] W. R. Dunbar, N. Lior, R. A. Gaggioli, Combining fuel cells with fuelfired power plants for improved exergy efficiency, Energy 16 (10) (1991) 1259 – 1274.
  • [46] W. Dunbar, N. Lior, R. Gaggioli, Effect of the fuel-cell unit size on the efficiency of a fuel-cell-topped rankine power cycle, Journal of Energy Resources Technology, Transactions of the ASME 115 (2) (1993) 105–107, cited By (since 1996)8.
  • [47] S. Chan, C. Low, O. Ding, Energy and exergy analysis of simple solid-oxide fuel-cell power systems, Journal of Power Sources 103 (2) (2002) 188 – 200.
  • [48] L. Larosa, A. Traverso, M. L. Ferrari, V. Zaccaria, Pressurized sofc hybrid systems: Control system study and experimental verification, Journal of Engineering for Gas Turbines and Power 137 (3) (2015) 031602.
  • [49] L. Larosa, A. Traverso, V. Zaccaria, AMBIENT TEMPERATURE IMPACT ON PRESSURIZED SOFC HYBRID SYSTEMS, in: ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 3, Int Gas Turbine Inst, 2015, ASME Turbo Expo: Turbine Technical Conference and Exposition, Montreal, CANADA, JUN 15-19, 2015.
  • [50] J. Milewski, M. Wołowicz, R. Bernat, L. Szablowski, J. Lewandowski, Variant analysis of the structure and parameters of sofc hybrid systems, in: Applied Mechanics and Materials, Vol. 437, Trans Tech Publ, 2013, pp. 306–312.
  • [51] D. Bakalis, A. Stamatis, Incorporating available micro gas turbines and fuel cell: Matching considerations and performance evaluation, Applied Energy 103 (2013) 607–617.
  • [52] M. Amirinejad, N. Tavajohi-Hasankiadeh, S. Madaeni, M. Navarra, E. Rafiee, B. Scrosati, Adaptive neuro-fuzzy inference system and artificial neural network modeling of proton exchange membrane fuel cells based on nanocomposite and recast nafion membranes, International Journal of Energy Research 37 (4) (2013) 347–357.
  • [53] L. Barelli, G. Bidini, S. Campanari, G. Discepoli, M. Spinelli, Performance assessment of natural gas and biogas fueled molten carbonate fuel cells in carbon capture configuration, JOURNAL OF POWER SOURCES 320 (2016) 332–342. doi:10.1016/j.jpowsour.2016.04.071.
  • [54] L. Bartela, J. Kotowicz, K. Dubiel, Technical - economic comparative analysis of energy storage systems equipped with a hydrogen generation installation, JOURNAL OF POWER TECHNOLOGIES 96 (2) (2016) 92–100.
  • [55] S. Bozorgmehri, M. Hamedi, Modeling and optimization of anodesupported solid oxide fuel cells on cell parameters via artificial neural network and genetic algorithm, Fuel Cells 12 (1) (2012) 11–23.
  • [56] D. A. Brunner, S. Marcks, M. Bajpai, A. K. Prasad, S. G. Advani, Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications, International Journal of Hydrogen Energy 37 (5) (2012) 4457 – 4466.
  • [57] W. M. Budzianowski, A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment, RENEWABLE & SUSTAINABLE ENERGY REVIEWS 54 (2016) 1148– 1171. doi:10.1016/j.rser.2015.10.054.
  • [58] W. M. Budzianowski, K. J. Budzianowska, D. S. Budzianowska, Analysis of solutions alleviating CO2 emissions intensity of biogas technology, INTERNATIONAL JOURNAL OF GLOBAL WARMING 9 (4) (2016) 507–528.
  • [59] K. Chaichana, Y. Patcharavorachot, B. Chutichai, D. Saebea, S. Assabumrungrat, A. Arpornwichanop, Neural network hybrid model of a direct internal reforming solid oxide fuel cell, International Journal of Hydrogen Energy 37 (3) (2012) 2498–2508.
  • [60] S. H. Chan, J. P. Stempien, O. L. Ding, P.-C. Su, H. K. Ho, Fuel cell and hydrogen technologies research, development and demonstration activities in Singapore - An update, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 41 (32) (2016) 13869–13878. doi:10.1016/j.ijhydene.2016.05.192.
  • [61] A. Chmielewski, R. Guminski, J. Maczak, Selected properties of the adiabatic model of the Stirling engine combined with the model of the piston-crankshaft system, in: 2016 21ST INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2016, pp. 543–548, 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, POLAND, AUG 29-SEP 01, 2016.
  • [62] A. Chmielewski, R. Guminski, J. Maczak, Dynamic model of a freepiston Stirling engine with four degrees of freedom combined with the thermodynamic submodel, in: 2016 21ST INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2016, pp. 583–588, 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, POLAND, AUG 29-SEP 01, 2016.
  • [63] A. Chmielewski, R. Guminski, J. Maczak, P. Szulim, Model-based re- search on a micro cogeneration system with Stirling engine, JOURNAL OF POWER TECHNOLOGIES 96 (4) (2016) 295–305.
  • [64] C. Churiaque, M. R. Amaya-Vazquez, F. J. Botana, J. M. Sanchez-Amaya, FEM Simulation and Experimental Validation of LBW Under Conduction Regime of Ti6Al4V Alloy, JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE 25 (8, SI) (2016) 3260–3269, International Symposium on Metal-Matrix Composites as part of the European Congress on Advanced Materials and Processes (EUROMAT), Warsaw, POLAND, SEP 20-24, 2015. doi:10.1007/s11665-016-2214-1.
  • [65] G. De Lorenzo, P. Fragiacomo, A methodology for improving the performance of molten carbonate fuel cell/gas turbine hybrid systems, International Journal of Energy Research 36 (1) (2012) 96–110.
  • [66] G. Discepoli, G. Cinti, U. Desideri, D. Penchini, S. Proietti, Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment, International Journal of Greenhouse Gas Control 9 (2012) 372–384.
  • [67] D. Grondin, J. Deseure, P. Ozil, J.-P. Chabriat, B. Grondin-Perez, A. Brisse, Solid oxide electrolysis cell 3d simulation using artificial neural network for cathodic process description, Chemical Engineering Research and Design 91 (1) (2013) 134–140.
  • [68] E. Jannelli, M. Minutillo, A. Perna, Analyzing microcogeneration systems based on lt-pemfc and ht-pemfc by energy balances, Applied Energy 108 (2013) 82–91.
  • [69] K. Janusz-Szymańska, Economic efficiency of an igcc system integrated with ccs installation [efektywność ekonomiczna układu gazowoparowego
  • zintegrowanego ze zgazowaniem węgla oraz z instalacją CCS], Rynek Energii 102 (5) (2012) 24–30.
  • [70] H. Jeong, K. Park, J. Cho, Numerical analysis of variable polarity arc weld pool, JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY 30 (9) (2016) 4307–4313. doi:10.1007/s12206-016-0845-7.
  • [71] P. Krawczyk, L. Szablowski, K. Badyda, S. Karellas, E. Kakaras, Impact of selected parameters on performance of the Adiabatic Liquid Air Energy Storage system, JOURNAL OF POWER TECHNOLOGIES 96 (4) (2016) 238–244.
  • [72] J. Kupecki, K. Motylinski, M. Ferraro, F. Sergi, N. Zanon, Use of NaNiCl battery for mitigation of SOFC stack cycling in base-load telecommunication power system-a preliminary evaluation, JOURNAL OF POWER TECHNOLOGIES 96 (1) (2016) 63–71.
  • [73] C.-G. Lee, D.-H. Kim, H.-C. Lim, Electrode reaction characteristics under pressurized conditions in a molten carbonate fuel cell, Journal of the Electrochemical Society 154 (4) (2007) B396–B404.
  • [74] X. Lv, X. Liu, C. Gu, Y. Weng, Determination of safe operation zone for an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system, ENERGY 99 (2016) 91–102. doi:10.1016/j.energy.2016.01.047.
  • [75] H. Marzooghi, M. Raoofat, M. Dehghani, G. Elahi, Dynamic modeling of solid oxide fuel cell stack based on local linear model tree algorithm, International Journal of Hydrogen Energy 37 (5) (2012) 4367–4376.
  • [76] J. Milewski, A mathematical model of sofc: A proposal, Fuel Cells 12 (5) (2012) 709–721.
  • [77] P. Pianko-Oprych, Z. Jaworski, Numerical modelling of the microtubular solid oxide fuel cell stacks [przeglad metod modelowania numerycznego mikrorurowych stał otlenkowych stosów ognhw paliwowych], Przemysl Chemiczny 91 (9) (2012) 1813–1815.
  • [78] J. Qian, Z. Tao, J. Xiao, G. Jiang, W. Liu, Performance improvement of ceria-based solid oxide fuel cells with yttria-stabilized zirconia as an electronic blocking layer by pulsed laser deposition, International Journal of Hydrogen Energy 38 (5) (2013) 2407–2412.
  • [79] D. Sánchez, B. Monje, R. Chacartegui, S. Campanari, Potential of molten carbonate fuel cells to enhance the performance of chp plants in sewage treatment facilities, International Journal of Hydrogen Energy 38 (1) (2013) 394–405.
  • [80] A. Sobolewski, . Bartela, A. Skorek-Osikowska, T. Iluk, Comparison of the economic efficiency of chp plants integrated with gazela generator [porównanie efektywności ekonomicznej układów kogeneracyjnych z generatorem gazu procesowego gazela], Rynek Energii 102 (5) (2012) 31–37.
  • [81] A. Zamaniyan, F. Joda, A. Behroozsarand, H. Ebrahimi, Application of artificial neural networks (ann) for modeling of industrial hydrogen plant, International Journal of Hydrogen Energy 38 (15) (2013) 6289–6297.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6ff6e75-83f4-451a-8535-2c2558ac5f11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.