PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption-desorption processes in adsorption chillers

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Proces adsorpcji i desorpcji w agregacie adsorpcyjnym
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to present the adsorption chillers technology. The operating principle of these systems, the adsorbent-adsorbate pairs that are frequently applied and the enhancement techniques that allow improvement of their efficiency are presented. Analysis of the mass transfer and principles of mathematical modeling of such systems are also discussed. In the further part of the text, the results of experimental studies and comparison of these results with calculations based on the mathematical model of adsorption were presented.
PL
Niniejsza praca ma na celu zaprezentowanie technologii agregatów adsorpcyjnych. Przedstawiono zasadę działania takich systemów, a mianowicie par adsorbat-adsorbent, które są często stosowane oraz technik ulepszania, które pozwalają na poprawę ich wydajności. Przedyskutowano także analizę przepływu masy oraz zasad modelowania matematycznego takich systemów. W dalszej części przedstawiono wyniki badań eksperymentalnych oraz porównanie takich wyników z obliczeniami na podstawie modelu matematycznego adsorpcji.
Rocznik
Strony
81--89
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Chair of Chemical and Process Engineering, Krakow University of Technology
Bibliografia
  • Anyanwu, E.E. (2004). Review of solid adsorption refrigeration II: An overview of the principles and theory. Energy Conversion and Management, 45, 1279-1295.
  • Bonaccorsi, L., Freni, A., Proverbio, E., Restuccia, G., Russo, F. (2006). Zeolite coated copper foams for heat pumping applications. Microporous and Mesoporous Materials, 91, 7-14.
  • Chang, K.S., Chen, M.T., Chung, T.W. (2005). Effects of the thickness and particle size of silica gel on the heat and mass transfer performance of a silica gel-coated bed for air-conditioning adsorption system. Applied Thermal Engineering, 25, 2330-2340.
  • Daßler, I., Mittelbach, W. (2012). Solar cooling with adsorption chillers. Energy Procedia, 30, 921-929.
  • Demir, H., Mobedi, M., Ulku, S. (2008). A review on adsorption heat pump: Problems and solutions. Renewable and Sustainable Energy Reviews, 12, 2381-2403.
  • Demir, H., Mobedi, M., Ulku, S. (2011). Microcalorimetric investigation of water vapor adsorption on silica gel.Journal of Thermal Analysis and Calorimetry, 105, 375-382.
  • Fan, Y., Luo, L., Souyri, B. (2007). Review of solar sorption refrigeration technologies: Development and applications. Renewable and Sustainable Energy Reviews, 11, 1758-1775.
  • Freni, A., Bonaccorsi, L., Proverbio, E., Maggio, G., Restuccia, G. (2009). Zeolite synthesised on copper foam for adsorption chillers: A mathematical model. Microporous and Mesoporous Materials, 120, 402-409.
  • Glueckauf, E. (1955). Theory of chromatography. Part 10. Formulae for diffusion into spheres and their application to chromatography. Transactions of the Faraday Society, 51, 1540-1551.
  • Gwadera, M., Kupiec, K. (2015). Investigation of water vapor adsorption on silica gel grains coated on a metal pipe. Adsorption Science and Technology, in press.
  • Ng, K. C., Chua, H. T., Chung, C. Y., Loke, C. H., Kashiwagi, T., Akisawa, A., Saha, B. B. (2001). Experimental investigation of the silica gel-water adsorption isotherm characteristic. Applied Thermal Engineering, 21, 1631-1642.
  • Rezk, A. (2012). Theoretical and experimental investigation of silica gel/water adsorption refrigeration systems, PhD thesis, The University of Birmingham, United Kingdom.
  • Ruthven, D.M. (1984). Principles of adsorption and adsorption processes, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore. ISBN 0-471-86606-7.
  • Seader, J.D., Henley, E.J. (2006). Separation processes principles, John Wiley & Sons, New York. ISBN 0-471-46480-5.
  • Sharafian, A., Bahrami, M. (2014). Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration. Renewable and Sustainable Energy Reviews, 30, 440-451.
  • Solmus, I., Rees, D. A. S., Yamali, C., Baker D. (2012). A two-energy equation model for dynamic heat and mass transfer in an adsorbent bed using silica gel/water pair.International Journal of-Heat and Mass Transfer, 55, 5275-5288.
  • Wang, D.C., Li, Y.H., Li, D., Xia, Y.Z., Zhang, J.P. (2010). A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems. Renewable and Sustainable Energy Reviews, 14, 334-353.
  • Wang, L. W., Wang, R. Z., Oliveira, R. G. (2009). A review on adsorption working pairs for refrigeration. Renewable and Sustainable Energy Reviews, 13, 518-534.
  • Wu, W. D., Zhang, H., Sun, D. W. (2009). Mathematical simulation and experimental study of a modified zeolite 13X-water adsorption refrigeration module. Applied Thermal Engineering, 29, 645-651.
  • Wang, L., Zhu, D., Tan, Y. (1999). Heat Transfer Enhancement of the Adsorber of an Adsorption Heat Pump.Adsorption, 5, 279-286.
  • Yang, R.T. (1997). Gas separation by adsorption processes, Imperial College Press, London (Originally published: Butterworths, Boston, London, 1987). ISBN 978-1-86094-047-7.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6fac9a0-21bf-4ce9-b8ea-28ad9ad63241
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.