PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-objective model-based design optimization of hydraulic shock absorbers

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
This paper presents the multi-objective optimization process of a hydraulic damper design based on its interdisciplinary meta-model considering both the properties of a damper and of the testing equipment used for the purpose of design criteria verification, and in particular the tolerance band criterion of damping force characteristics, the criterion of maximum permissible vibration level expressed with the piston rod acceleration and the criterion of fatigue durability for the damper’s hydraulic valve system. The meta-model of a damper and a testing bench include the following models: mechanical model, hydraulic model, electro-hydraulic model and valve system fatigue durability model. The multi-objective optimization method provides an optimal solution by means of Pareto frontier. Furthermore, all potential feasible solutions are ranked according to additional customer preferences to select the most suitable ones. The proposed method is intended to be used to determine the best starting point in a new shock absorber design process.
Rocznik
Strony
147--166
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Silesian University of Technology Institute of Engineering Processes Automation and Integrated Manufacturing Systems Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] J. Dixon. The Shock Absorber Handbook. John Wiley & Sons, 2008.
  • [2] W. Wang, X. Yang, G. Xu, Y. Huang. Multi-objective design optimization of the complete valve system in an adjustable linear hydraulic damper. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(3): 679–699, 2011.
  • [3] M. Kaldas, K. Çalışkan, R. Henze, F. Küçükay. Optimization of damper top mount characteristics to improve vehicle ride comfort and harshness. Shock and Vibration, vol. 2014, 2014.
  • [4] N.V. Satpute, S. Singh, S. Sawant. Fluid flow modelling of a fluid damper with shim loaded relief valve. International Journal of Mechanical Engineering, 2(1): 65–74, 2013.
  • [5] R. Sonnenburg. Optimized parameter combinations of hydraulic damper modules. Journal of Transportation Technologies, 4(3): 277, 2014.
  • [6] P. Czop, D. Sławik, P. Śliwa. Static validation of a model of a disc valve system used in shock absorbers. International Journal of Vehicle Design, 53(4): 317–342, 2010.
  • [7] P. Czop, D. Sławik. A high-frequency first-principle model of a shock absorber and servo-hydraulic tester. Mechanical Systems and Signal Processing, 25(6): 1937–1955, 2011.
  • [8] S. Subramanian, R. Surampudi, K. Thomson. Development of a Nonlinear Shock Absorber Model for LowFrequency NVH Applications. SAE SP, pp. 79–84, 2003.
  • [9] G. Wszołek [Ed.], P. Czop, D. Gąsiorek, J. Gniłka, D. Jakubowski, D. Sławik, J. Świder. The Simulation Model of Hydraulic Damper for the Rapid Prototyping Needs [in Polish: Model symulacyjny tłumika hydraulicznego na potrzeby szybkiego prototypowania]. Silesian Technical Univerisity, 2013.
  • [10] G. Kost, P. Czop, D. Jakubowski, S. Damian, T. Włodarczyk, G. Wszołek. Parameter Estimation of FirstPrinciple Models Formulated Using Nonlinear Ordinary Differential Equations. Monograph. Silesian Technical University, 2013.
  • [11] P. Czop, D. Sławik, G. Wszołek. Development of an optimization method for minimizing vibrations of a hydraulic damper. Simulation, 89(9): 1073–1086, 2013.
  • [12] T. Amago. Sizing optimization using response surface method in FOA. R&D Review of Toyota CRDL, 37(1): 1–7, 2002.
  • [13] C.J. Wu, M.S. Hamada. Experiments: Planning, Analysis, and Optimization, vol. 552. John Wiley & Sons, 2011.
  • [14] A. Król, G. Wszołek, P. Czop. Optimization of pneumatic actuators with the use of design for Six Sigma methodology. Journal of Achievements in Materials and Manufacturing Engineering, 47(2): 205–210, 2011.
  • [15] P. Czop, D. Sławik, T. Włodarczyk, M. Wojtyczka, G. Wszołek. Six Sigma methodology applied to minimizing damping lag in hydraulic shock absorbers. Journal of Achievements in Materials and Manufacturing Engineering, 49(2): 243–250, 2011.
  • [16] G. Wszołek, M. Hetmańczyk, D. Sławik, P. Czop. Device for testing static and dynamic fatigue strength of valves built on the basis of disk springs. Silesian Technical University, Patent request, PL 407554 A1; ISSN 0137-8015; no. 20, p. 34, 2015.
  • [17] G. Wszołek, M. Hetmańczyk, T. Włodarczyk, D. Jakubowski, P. Czop. Active hydraulic suppressor, preferably for tuning of components and testing of the impact of the working fluid aeration phenomenon. Silesian Technical University, Patent request, PL 407552 A1; ISSN 0137-8015; no. 20, pp. 27–28, 2015.
  • [18] P. Czop, G. Kost, D. Sławik, G. Wszołek. Formulation and identification of first-principle data-driven models. Journal of Achievements in Materials and Manufacturing Engineering, 44(2): 179–186, 2011.
  • [19] P. Czop, D. Sławik, G. Wszołek. Demonstration of first-principle data-driven models using numerical case studies. Journal of Achievements in Materials and Manufacturing Engineering, 45(2): 170–177, 2011.
  • [20] G. Wszołek, P. Czop, A. Skrobol, and D. Sławik. A nonlinear, data-driven model applied in the design process of disc-spring valve systems used in hydraulic dampers. Simulation, 89(3): 419–431, 2013.
  • [21] J. Świder, G. Wszołek, P. Czop, D. Jakubowski, D. Gąsiorek, D. Sławik, A. Skrobol, T. Włodarczyk, Z. Buliński, J. Gniłka. Model-based approach applied in optimization of hydraulic valve systems. Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, 2013.
  • [22] P. Czop, D. Sławik, P. Śliwa, G. Wszołek. Simplified and advanced models of a valve system used in shock absorbers. Journal of Achievements in Materials and Manufacturing Engineering, 33(2): 173–180, 2009.
  • [23] S.S. Rao. Engineering Optimization: Theory and Practice. John Wiley & Sons, 2009.
  • [24] M.J. Reddy, D.N. Kumar. Optimal reservoir operation using multi-objective evolutionary algorithm. Water Resources Management, 20(6): 861–878, 2006.
  • [25] P. Czop, G. Wszołek. Model-based design approach to reducing mechanical vibrations. Journal of Achievements in Materials and Manufacturing Engineering, 60(1): 39–47, 2013.
  • [26] MathWorks, Global Optimization Toolbox User’s Guide. Natick 2015, 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6ed4c2b-f388-4648-8ddc-135519046c05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.