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Abstract: Graph databases are applied in many applications, including science and 
business, due to their low-complexity, low-overheads, and lower time-complexity. The 
graph-based storage offers the advantage of capturing the semantic and structural 
information rather than simply using the Bag-of-Words technique. An approach called 
Knowledgeable graphs (K-Graph) is proposed to capture semantic knowledge. Documents 
are stored using graph nodes. Thanks to weighted subgraphs, the frequent subgraphs are 
extracted and stored in the Fast Embedding Referral Table (FERT). The table is maintained 
at different levels according to the headings and subheadings of the documents. It reduces 
the memory overhead, retrieval, and access time of the subgraph needed. The authors 
propose an approach that will reduce the data redundancy to a larger extent. With real-
world datasets, K-graph’s performance and power usage are threefold greater than the 
current methods. Ninety-nine per cent accuracy demonstrates the robustness of the 
proposed algorithm. 
Keywords: subgraph mining, graph database, text classification 
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1. Introduction 

The data available everywhere is either news, tweets, blogs, comments or documents. 
All the mentioned sources contain data in the textual format, having many facts, 
observations and insights which can be a breakthrough in various business decisions [3]. In 
its inherent form, the data is of no utilization as it does not provide any value, so no 
knowledge can be extracted from it. To extract the knowledge from the huge number of text 
documents, an appropriate structure to store the documents is required [21]. The perilous 
metric used in text analysis is to identify the context and existing relationships between the 
words [20]. The mechanism to store the data should provide a connected way to store the 
extracted meaning. The appropriate model to store such highly connected data is a graph 
database. The knowledge extracted from documents is represented through nodes and edges 
between them [6]. But building the knowledgeable graph manually for a large set of 
documents like legal case files, books is a challenging task.  

Previously, a technique like Bag-of-words was proposed to capture the frequency of 
words and phrases, but the structural information was ignored [18]. But it has been shown 
that structural information affects classification accuracy [13]. So, graph databases 
appeared to be more expressive in storing text documents. But it introduces the complexity 
of comparing two similar graphs [16]. It is computationally more expensive when the 
graphs are large [1]. 

In this paper, an approach is proposed to address the challenge of constructing 
knowledgeable graphs (K-graphs). The work also focuses on reducing the computational 
cost so that the expressive power of graph databases can be fully utilized. To generate the 
k-graphs, the documents are retrieved from the URLs. Before storing, the documents are 
pre-processed using the standard dictionaries. The extracted headings and subheadings are 
organized in a subgraph structure. The general headings appear close to the top, and the 
more specific subheadings appear at the lowest level. To reduce the computational cost, the 
weighted subgraphs are used, and a referral table is maintained, which will be updated 
incrementally. To include the new documents in k-graphs, the referral table is used. Thus, 
the search space for matching the headings and subheadings is reduced. 

The rest of the paper is organized as follows: Section II gives the literature survey of 
the work done by different researchers, Section III discusses some preliminary concepts and 
the proposed approach for building K-graphs and the evaluation and comparison of the 
proposed algorithm with other baseline techniques is given in section IV. Finally, the paper 
is concluded with the future scope in section V. 

2. Related work 

Previous approaches that use graph-based document representation were mainly meant 
for web documents. The method proposed by Geibel, Krumnack, Pustylnikov and Mehler 
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[5] showed that web documents could be classified using only structural information. 
However, excluding linguistic and semantic structure in the case of text documents affects 
classification accuracy. Schenker [22] proposed an approach by combining semantic 
information along with structural information. And for classification, the graph similarity-
based algorithm was used. But the approaches that work on graph similarity-based methods 
are computationally expensive [19]. Instead of using pure graph representation, a hybrid 
representation was proposed to reduce computational cost [17]. However, even after using 
a hybrid method, the computational overhead was still high due to many nodes and edges 
and exponential growth in search space. 

Gee and Cook [4] proposed to include both semantic information and word order in 
the graph that was used for text classification. But this was limited to small text only. In our 
work, we use structural, linguistic and semantic information to generate K-graphs for text 
classification, even for large text.  

An extensive study of different Frequent Subgraph Mining (FSM) techniques has been 
done [12, 23, 24,.  Most of the FSM techniques work on the generation of candidate keys. 
The generation of unnecessary candidate keys is a major limitation of FSM techniques [14]. 
To generate the candidate keys, the database is scanned recursively, and it is 
computationally expensive for large datasets. A lot of work was done to design an efficient 
FSM approach by improving search strategies [11, 15]. A constraint-based FSM approach 
is proposed so that unwanted subgraph with infrequent patterns can be eliminated [27]. 
Another technique called Closegraph  is proposed that mines only the subgraphs which are 
closed [28]. Pruning only the close subgraphs increases the closegraph’s performance in 
comparison to other techniques, but some important subgraphs are also ignored [25]. In our 
work, we have focused on a weighted subgraph that combines the constraint of weight with 
FSM. With weighted subgraphs, the search space is reduced as the subgraphs which are 
insignificant are ignored. Moreover, in our work, we also introduce the concept of 
maintaining a Fast Embedding Referral Table (FERT) to reduce the search complexity and 
make the graphs knowledgeable by storing all important headings and subheadings at 
different levels. 

3. K-Graphs 

3.1. Overview of K-Graphs approach 
An approach called K-graphs is proposed in this section to generate knowledgeable 

graphs for large text documents. K-graphs uses two important concepts. It assigns weight 
to each keyword stored in a node according to its relative frequency with respect to 
a document to be stored in a graph database. And it maintains a referral table called FERT 
that have the list of all frequent subgraphs along with the embedding of each subgraph root 
node.  
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The proposed approach works in the following steps: 
1. Pre-processing- For a set of documents to be stored, extract all the keywords. Since 

all the extracted keywords are not to be stored, to improve the model’s accuracy,  the text 
documents are pre-processed by removing extra words. 

2. Storing in a graph database- All the retained words are stored in the graph database 
along with the document_id. 

3. The important subheadings are assigned a weight. A subgraph is created using the 
subheading as the root node, and referral table FERT is updated accordingly. The FERT 
trims the search space before generating the new subgraphs; then, the FERT is accessed. If 
the subheadings already exist, then only the embedding information is updated. Otherwise, 
the subgraph is created, and FERT is updated. 

3.2. Proposed methodology 
Initially, two graphs  Dicteliminate and Dictretained are created from the pre-existing 

dictionaries according to the application context. Dictretained is a dictionary of retained words 
from a larger graph database. The model creates graph databases of benchmark dictionaries 
of verbs, positive, negative, common nouns and prepositions. This graph is named 
Dicteliminate. These graphs preprocess the text and retain only the keywords. Further, a graph 
database based on the dictionary of legal words (taken as an example for the paper) filters 
the words and a graph database with legal words in a document is created.  Dictretained is a 
benchmark graph database of legal words created by authors. 

1. The dictionaries are created to preprocess the documents 
    Dicteliminate and Dict retained 
After step 1, two graphs will be created. 

2. Pre-process the document that is to be tested 
a. Eliminate the unnecessary words using the graph created in step one using Dictretained. 
Read a line of the document, split the words, and remove the unwanted words using 

the dictionary graph.  
b. Retain relevant words using Retained words’ graph database in step 1. 
Let Wn  is the set of all retained words in a document. It can be explained as follows: 

 𝑊𝑊𝑛𝑛 = ��𝐷𝐷𝐷𝐷𝐷𝐷𝑤𝑤𝑛𝑛𝑖𝑖  , 𝑓𝑓𝑛𝑛𝑖𝑖� �  𝐷𝐷𝐷𝐷𝐷𝐷𝑤𝑤𝑛𝑛(𝑖𝑖)  ∈  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  }𝑛𝑛∈(1,𝑙𝑙𝑛𝑛)��������    (1) 

where 𝐷𝐷𝐷𝐷𝐷𝐷𝑤𝑤𝑛𝑛𝑖𝑖  is the i-th word of the n-th document, 𝑓𝑓𝑛𝑛𝑖𝑖  is its (word) frequency in the n-th 
document, Dict retained is the dictionary of retained words, and ln is the length of the n-th 
document. 

Using equation (1), finally obtained retained words are stored using a graph database. 
All the retained words are the nodes, and the relationship with the document are the edges 
in the graph database. The figures given in section 4.5 show the snapshot of the graph 
database. 
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3. Create Subgraphs based on the important attributes using (2). For example, if we store 
a legal case in a graph database, the important attributes like the category of the case: 
Indian Penal Code (IPC), Civil Procedure Code (CPC), Criminal Procedure Code 
(CrPC) forms the head nodes. The properties of the data are stored as the attributes 
(or properties) of the node. Sections related to the above-mentioned categories form 
the leaf nodes. A relation is set between the category and the section. Further, the 
cases related to the section fall within the relevant sections and a relationship is 
established between the case and the section. The graph is further split from the 
section to form the subgraphs. The subgraphs are split using equation (2). 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 = {𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖    |     𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛 }𝑖𝑖∈(1,𝐶𝐶)�������  (2) 

where Atrribi is the pre-given attribute of the database, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛   means that given 
attribute characterises the document (i.e. if the document involves Indian Penal Code(IPC), 
then IPC is stored as an attribute in the node) and C is the total number of all attributes. 

 
4. Allocate weight to the nodes by calculating the arithmetic mean by using equation (3)  

 𝑓𝑓̅ = ∑ 𝑓𝑓𝑖𝑖
𝑙𝑙
𝑖𝑖=1  

∑ 𝑡𝑡𝑡𝑡𝑖𝑖𝑙𝑙
𝑖𝑖=1

  (3) 

where fi  is the frequency of a keyword in a document and tfi  is the total number of extracted 
words from the document. Thus, the properties stored with a node are specified in equation 
(4): 

 𝐾𝐾𝐾𝐾𝐾𝐾𝑛𝑛 = {𝑊𝑊𝑛𝑛 ,  𝐷𝐷𝑛𝑛 ,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 , 𝑓𝑓 ̅}  (4) 

where Wn , Attrn  , and 𝑓𝑓 ̅are described above in equation (1), (2) and (3) and Dn is the 
document id. 

3.3. Algorithm of K-Graph 
The algorithm for the proposed methodology is specified in three parts. The first part 

describes the creation of the main graph specified by algorithm 1 in a tab. 1. Fast Embedding 
Referral Table (FERT) is created when the main graph database is split into sub-graphs. 
FERT has the references for the main and subgraphs with keywords. It is an index of the 
entire database. FERT is created so that the model can refer directly to the related sub-
graphs instead of traversing the entire database. This helps in cutting the traversing time 
considerably. Algorithm 2 in a tab. 2 describes the creation of subgraph and updating the 
FERT table. The algorithm 3 in a tab. 3 defines the traversal and searching the graph using 
the referral table. 
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Table 1  
Creating the main graph 

Algorithm 1.  Creating Main Graph 
Create a Graph 
ID set to zero 
Root  ID, Name 
While the end of the folder: 
File  read file 
Title  read the title 
ID  +1 
SubNode  [ID, Title] 
[Contains] set relation with Root 
Ltable ID, Title 
While not end of File: 
 If Heading1: 
  ID  +1 
  Sub1Create node 
  Properties{Lev1_ID, Current_ID,Heading1} 
  [Contains] set relation with SubNode 
  Keyw Applying equations (1) to (2) 
  Ltable  append [ID, Heading1, Keyw] 
  if Heading2: 
   ID  +1 
   Sub2Create node 
   Properties{Lev2_ID, Current_ID,Heading2} 
   [Contains] set relation with Sub1 
   Keyw Applying equations (2) to (4) 
   Ltable2  append [Lev1_ID ,ID, Heading2, Keyw ] 
  End if 
 End while 
End while 

 
Algorithm 1 shows the process of creating graphs. The process of creating the graphs 

is simultaneously followed by creating the subgraphs. The referral table is updated 
concurrently on the creation of the subgraph. The graph is created to store any document 
with its headings and subheadings. For storing any document, SubNode is created with the 
document’s title and the document Id as node embedding. The relation of this SubNode is 
established with the root node. For every heading in the document, another SubNode is 
created with its Lev_ID, Current_ID, Heading as node embedding. The referral table is 
updated by appending the key weight as calculated in (3) represented by wt. The process 
continues for all the headings in the document. 
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Table 2  
Creating Subgraphs 

Algorithm 2. Creating Subgraphs 
Sub-Graph – I 
Read FERT_table 
Create subGraph 
ID set to zero 
n1 
Root  ID, 'Level{n}' 
Read FERT table 
LID  Level ID  //store Level ID of first record 
While not end of FERT_table: 
     If LID== Level ID 
  Keyword  {Keyw} 
  While key in Keyword: 
         If unique(kw):   
   Subcreate node 
   ID+1 
   Properties{ID,Key, wt} 
   Keyword set relation with Root 
         Else 
   wt mean(Previous_wt ,current_wt) 
   Update Properties 
        End if 
  End while 
  Else:  
                Create subGraph 
                ID set to zero 
                 n=n+1; 
                Root  ID, 'Level{n}' 
                LID  Level ID 
End while 
 
Sub-Graphs 
Until the FERT table has records sub-graphs will be created starting from Level1.  

 
Algorithm 2 in tab. 2 shows the creation of subgraphs. The subgraphs are created by 

taking level id from the referral table FERT. Before inserting a new node, the node for the 
corresponding keyword is searched in the referral table; if found, the node embeddings and 
the referral table are updated. Otherwise, a new node is created, and its relation is 
established with the root node. The structure of the referral tables produced is shown below 
in FERT_table1 in a tab. 3 and FERT_table2 in a tab. 4. 
  



 Varsha Mittal, Durgaprasad Gangodkar, Bhaskar Pant  

80 

Table 3  
FERT_table 1 

Level 0 Level 1 Level 2 Keywords 
0 1 {2,Name} 2.1 
0 1 4 4.1 
0 1 6 6.1 

Table 4 
FERT_table2 

Level 3 Keywords 
{2,3,Name,Kws} 3.1 
{4,5,Name,Kws} 5.1 

 
Algorithm 3 in tab. 5 shows the process of traversing the subgraphs whenever searched  

for a particular keyword. All the subgraphs are traversed, and the target subgraph is 
displayed. 

Table 5 
Traversing a Subgraph 

Algorithm 3. Traversing a subgraph  
SubGraph1 read Sub-Graph – I 
SubGraph2 read Sub-Graph – II 
Key_search  read keyword to be searched 
If (match(keyword,SubGraph1)): 
 Display {node name, weight} 
Else If (match(keyword,SubGraphII)): 
 Display {node name, weight} 
Else 
 Display  errors message 
End If 
 

3.4. Fast Embedding Referral Table (FERT) 
The proposed referral table (FERT) maintains the list of extracted subgraphs headers 

at a different level. It provides an efficient mechanism by reducing redundancy, memory 
overhead and retrieval time. It supports fast update, searching and access to the target node. 
The referral table components will be the subgraph heading (node id of the root of the 
extracted subgraph) and the predecessors and successors of the corresponding root node id 
of the stored subgraph. Along with the IDs, it would have keywords as well. This will make 
the graphs Knowledgeable as each subheading maintains a link to its adjacent node and its 
predecessor node. FERT provides an efficient method for inserting and deleting edge in the 
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graph. A new edge is initially searched for in the FERT. If found, it will not be inserted 
again as FERT does not allow for multiple entries for the same edge. A relationship would 
be established between the existing keyword and the level; also, the weight would be 
incremented by one. Adding a new entry in the FERT includes the storage of the node id of 
the subgraph node and also the storage of the embedding of all nodes at its next level. The 
deletion of every node will result in the removal of all the relationships to the node, and the 
counter is decremented by one. Maintenance of the FERT will eliminate the need for the 
entire database retrieval and will reduce the retrieval time, as shown in the results.  

4. Experimental evaluation  

In this section, the proposed approach K-Graph is compared with the three basic 
approaches  Gspan [27], WARM [26] and GastonFSM [2]. 

Gspan technique carries out the iteration of subgraph generation from scratch after 
each update in the input graph. The methodology of WARM works on the concept of 
weighted association rule mining. 

The GastonFSM keeps a list of each node's embedding. After evaluating the existing 
embedding list, the new nodes are created. It has improved the performance of the 
embedding generation system but has increased the traverse time as even for single 
embedding; the whole chain has to be traversed.  

In the further section, the proposed technique is compared with the above-mentioned 
techniques with respect to efficiency, memory overhead and accuracy. The memory 
overhead is computed in terms of the consumption of memory. Finally, the output of the 
proposed algorithm in the form of a graph database is shown.  

4.1. Experimental environment and datasets 
The experiments are performed on Intel® Core TM i5-8th Gen 8250u CPU with 16 

GB RAM with NVIDIA GeForce and 256 CUDA cores GPUs. Graph Database Neo4j has 
been installed on Windows 10. Python and Pytorch 0.4.0 are taken as a programming 
language. 

The four actual datasets are used to conduct the experiments. The studies are carried 
out on four different types of documents. The graphs are developed for the storage of 
academic papers, thesis, books, and legal cases. “The number of documents considered is 
10000. For the sake of the experiment, legal judgments are downloaded directly from the 
web site of the Supreme court (indiankanoon.org). They are in PDF formats. 

To assess the efficiency of the proposed model on other domains, we have also tested 
on the thesis (library.stanford.edu), research papers (shodhganga.inibnet.ac.in) and books 
(read.gov)”. 
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4.2. Efficiency 
The efficiency of the proposed algorithm is compared with Gspan, WARM and 

GastonFSM. Efficiency is evaluated in terms of time required for generating the graph along 
with all the subgraphs and mining the entire graph. Figure 1 illustrates the result of the 
efficiency comparison. The X-axis shows the different datasets used, and Y-axis shows the 
elapsed time for the graph generation. The estimated time is calculated for a small subset of 
data and then extrapolated for the entire dataset. The graph clearly shows that K-graph 
outperforms in comparison to all the other three techniques. The result’s improvement is 
due to the use of a referral table (FERT) since it eliminates the need for accessing the entire 
graph again and again.  

 

 
Fig. 1. Time comparison for graph generation 

Gspan takes the maximum time as every subgraph generation is done from scratch. 
Gaston FSM & WARM perform well when the graph is small. But with larger graphs, the 
performance is depreciated since all the node embeddings are to be stored. And for larger 
graphs, the embeddings become too large to store. This increases the memory requirement 
and time taken; hence the efficiency is reduced. 
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Fig. 2. Comparison of K-graph to other techniques 

Figure 2 shows the comparison of K-graph to other techniques on improved 
computation time. It shows that the K-graph performs 55.85% better than Gspan, 53.11% 
better than WARM and 51.5% better than GastonFSM.  
 

 
Fig. 3. Time taken to generate subgraphs 

Efficiency can also be evaluated in terms of the time taken to generate the subgraphs 
at different levels where the levels are taken from the FERT. Figure 3 shows the time taken 
by different techniques to generate the subgraphs on the different datasets. 

In K-graphs, the subgraphs are generated after searching the referral table at a previous 
level, which reduces the time required to mine the entire workload. So it outperforms the 
other three techniques. Figure 3 shows that K-graphs performs 56.42% better than Gspan, 
48.9% better than GastonFSM and 44.07% better than WARM. 
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4.3. Memory overhead 
The proposed algorithm is evaluated in terms of memory overhead. The memory 

overhead is the memory required to store the subgraphs generated. The subgraphs are 
generated according to the different subheadings of the target document. 

 

 
Fig. 4. Memory overhead of different techniques 

The graph in figure 4 shows the memory consumption for storing the subgraphs in 
different techniques. The interesting point is that the memory consumption of the proposed 
algorithm is not large at level 0, and level 1 since the subgraphs at level 0,1 are according 
to headings and subheadings. At level 2, where the keywords are stored, the memory 
consumption increases. But at level 4, only the relation to the existing node is established, 
so finally, the memory consumption decreases and improves the K-graph’s performance. 
The WARM has maximum memory consumption since the subgraph is always generated 
from scratch. The histogram in fig. 5 below shows the comparison of the K-graph with the 
other three techniques. It is observed that the memory consumption of the K-graph is less 
since the FERT is maintained at different levels, which not only reduces the data 
redundancy but also affects the memory requirement to a larger extent. As it maintains the 
list of embeddings, the memory requirement for the FERT is insignificant compared to other 
techniques. In the proposed approach, the list of embeddings is carefully reduced.  
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Fig. 5. Improvement of K-graph over other techniques in memory overhead 

The improvement of the proposed algorithm is shown in tab. 4 below, which signifies 
the number of subgraphs reduced. Table 6 clearly shows the number of subgraphs that can 
be created according to the subheadings in the legal case files and the number of subgraphs 
that are actually created. 

Table 6 
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Ranbhaivsstofgujarat2000.pdf 14 14 
VikramvsstofMaharash2014.pdf 13 13 

4.4. Accuracy 
The improvement can also be evaluated in terms of Accuracy. Table 7 shows the 

keywords extracted (TN) and the keywords stored in every subgraph (TP). The table shows 
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precision, recall, accuracy and F-score of the proposed algorithm is computed. From the 

0
200
400
600
800

1000

To
ta

l m
em

or
y 

re
qu

ire
m

en
t i

n 
KB

Different Algorithm

Comparison of Different techniques for 
memory overhead



 Varsha Mittal, Durgaprasad Gangodkar, Bhaskar Pant  

86 

table, it can be perceived that the accuracy of the proposed algorithm is approximately 99 
per cent. It proves that the proposed algorithm is optimized to generate the subgraphs and 
store the relevant keywords after removing redundancy. 

Table 7 
Computed values of Precision, Recall, Accuracy and F_score 

Sub 
graph  TP FP TN FN Precision Recall Accuracy F-score 
1 1024 0 1024 0 1 1 1 1 
2 1012 0 1012 0 1 1 1 1 
3 9862 0 9861 1 0.999898 1 0.99994 0.9999493 

4 8013 0 8011 2 0.999750 1 0.99987 0.9998752 
5 9776 0 9771 5 0.999488 1 0.99974 0.9997443 

4.5. Results  
Figure 6 shows a screenshot of the Level 1 graph created. The title of the document is 

taken as the root node and Headers as its leaf nodes. 

Fig. 6. Snapshot of graph database at level 1 

Figure 7 shows a screenshot of the Level 2 graph. One of the headers has been 
considered with keywords. Similar headers will not be added, only weight would be 
incremented by one, and unique keywords would be added.   
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Fig. 7. Snapshot of level 2 graph database  

5. Conclusions 

The proposed algorithm allows for the careful classification of the text using the 
database of Graphs. The findings clearly show that redundancy is reduced by more than 50 
per cent, and even space is reduced by about 50 per cent. Because time is directly 
proportional to the amount of space taken, lower space requirements resulted in lower 
traverse time needed. FERT is one more plus. It is only used to search the Database, and is 
updated periodically. K-graph can prove to be a revolution in the processing of natural 
languages (NLP). The authors plan to refine the algorithm a little more in the future and 
apply it to real-life case studies to determine its robustness. K-graph will help  develop Bots, 
Plagiarism software, electronic keyword library, educational browsers, and even design new 
SAP software to generate fast queries.  
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