
 Journal of KONBiN 2021
 Volume 51, Issue 1

 DOI 10.2478/jok-2021-0006

73

Varsha MITTAL, Durgaprasad GANGODKAR, Bhaskar PANT
Graphic Era Deemed to be University, Dehradun, Uttarakhand, India

K-GRAPH: KNOWLEDGEABLE GRAPH
FOR TEXT DOCUMENTS

Abstract: Graph databases are applied in many applications, including science and
business, due to their low-complexity, low-overheads, and lower time-complexity. The
graph-based storage offers the advantage of capturing the semantic and structural
information rather than simply using the Bag-of-Words technique. An approach called
Knowledgeable graphs (K-Graph) is proposed to capture semantic knowledge. Documents
are stored using graph nodes. Thanks to weighted subgraphs, the frequent subgraphs are
extracted and stored in the Fast Embedding Referral Table (FERT). The table is maintained
at different levels according to the headings and subheadings of the documents. It reduces
the memory overhead, retrieval, and access time of the subgraph needed. The authors
propose an approach that will reduce the data redundancy to a larger extent. With real-
world datasets, K-graph’s performance and power usage are threefold greater than the
current methods. Ninety-nine per cent accuracy demonstrates the robustness of the
proposed algorithm.
Keywords: subgraph mining, graph database, text classification

 Varsha Mittal, Durgaprasad Gangodkar, Bhaskar Pant

74

1. Introduction

The data available everywhere is either news, tweets, blogs, comments or documents.
All the mentioned sources contain data in the textual format, having many facts,
observations and insights which can be a breakthrough in various business decisions [3]. In
its inherent form, the data is of no utilization as it does not provide any value, so no
knowledge can be extracted from it. To extract the knowledge from the huge number of text
documents, an appropriate structure to store the documents is required [21]. The perilous
metric used in text analysis is to identify the context and existing relationships between the
words [20]. The mechanism to store the data should provide a connected way to store the
extracted meaning. The appropriate model to store such highly connected data is a graph
database. The knowledge extracted from documents is represented through nodes and edges
between them [6]. But building the knowledgeable graph manually for a large set of
documents like legal case files, books is a challenging task.

Previously, a technique like Bag-of-words was proposed to capture the frequency of
words and phrases, but the structural information was ignored [18]. But it has been shown
that structural information affects classification accuracy [13]. So, graph databases
appeared to be more expressive in storing text documents. But it introduces the complexity
of comparing two similar graphs [16]. It is computationally more expensive when the
graphs are large [1].

In this paper, an approach is proposed to address the challenge of constructing
knowledgeable graphs (K-graphs). The work also focuses on reducing the computational
cost so that the expressive power of graph databases can be fully utilized. To generate the
k-graphs, the documents are retrieved from the URLs. Before storing, the documents are
pre-processed using the standard dictionaries. The extracted headings and subheadings are
organized in a subgraph structure. The general headings appear close to the top, and the
more specific subheadings appear at the lowest level. To reduce the computational cost, the
weighted subgraphs are used, and a referral table is maintained, which will be updated
incrementally. To include the new documents in k-graphs, the referral table is used. Thus,
the search space for matching the headings and subheadings is reduced.

The rest of the paper is organized as follows: Section II gives the literature survey of
the work done by different researchers, Section III discusses some preliminary concepts and
the proposed approach for building K-graphs and the evaluation and comparison of the
proposed algorithm with other baseline techniques is given in section IV. Finally, the paper
is concluded with the future scope in section V.

2. Related work

Previous approaches that use graph-based document representation were mainly meant
for web documents. The method proposed by Geibel, Krumnack, Pustylnikov and Mehler

 K-Graph: knowledgeable graph for text documents

75

[5] showed that web documents could be classified using only structural information.
However, excluding linguistic and semantic structure in the case of text documents affects
classification accuracy. Schenker [22] proposed an approach by combining semantic
information along with structural information. And for classification, the graph similarity-
based algorithm was used. But the approaches that work on graph similarity-based methods
are computationally expensive [19]. Instead of using pure graph representation, a hybrid
representation was proposed to reduce computational cost [17]. However, even after using
a hybrid method, the computational overhead was still high due to many nodes and edges
and exponential growth in search space.

Gee and Cook [4] proposed to include both semantic information and word order in
the graph that was used for text classification. But this was limited to small text only. In our
work, we use structural, linguistic and semantic information to generate K-graphs for text
classification, even for large text.

An extensive study of different Frequent Subgraph Mining (FSM) techniques has been
done [12, 23, 24,. Most of the FSM techniques work on the generation of candidate keys.
The generation of unnecessary candidate keys is a major limitation of FSM techniques [14].
To generate the candidate keys, the database is scanned recursively, and it is
computationally expensive for large datasets. A lot of work was done to design an efficient
FSM approach by improving search strategies [11, 15]. A constraint-based FSM approach
is proposed so that unwanted subgraph with infrequent patterns can be eliminated [27].
Another technique called Closegraph is proposed that mines only the subgraphs which are
closed [28]. Pruning only the close subgraphs increases the closegraph’s performance in
comparison to other techniques, but some important subgraphs are also ignored [25]. In our
work, we have focused on a weighted subgraph that combines the constraint of weight with
FSM. With weighted subgraphs, the search space is reduced as the subgraphs which are
insignificant are ignored. Moreover, in our work, we also introduce the concept of
maintaining a Fast Embedding Referral Table (FERT) to reduce the search complexity and
make the graphs knowledgeable by storing all important headings and subheadings at
different levels.

3. K-Graphs

3.1. Overview of K-Graphs approach
An approach called K-graphs is proposed in this section to generate knowledgeable

graphs for large text documents. K-graphs uses two important concepts. It assigns weight
to each keyword stored in a node according to its relative frequency with respect to
a document to be stored in a graph database. And it maintains a referral table called FERT
that have the list of all frequent subgraphs along with the embedding of each subgraph root
node.

 Varsha Mittal, Durgaprasad Gangodkar, Bhaskar Pant

76

The proposed approach works in the following steps:
1. Pre-processing- For a set of documents to be stored, extract all the keywords. Since

all the extracted keywords are not to be stored, to improve the model’s accuracy, the text
documents are pre-processed by removing extra words.

2. Storing in a graph database- All the retained words are stored in the graph database
along with the document_id.

3. The important subheadings are assigned a weight. A subgraph is created using the
subheading as the root node, and referral table FERT is updated accordingly. The FERT
trims the search space before generating the new subgraphs; then, the FERT is accessed. If
the subheadings already exist, then only the embedding information is updated. Otherwise,
the subgraph is created, and FERT is updated.

3.2. Proposed methodology
Initially, two graphs Dicteliminate and Dictretained are created from the pre-existing

dictionaries according to the application context. Dictretained is a dictionary of retained words
from a larger graph database. The model creates graph databases of benchmark dictionaries
of verbs, positive, negative, common nouns and prepositions. This graph is named
Dicteliminate. These graphs preprocess the text and retain only the keywords. Further, a graph
database based on the dictionary of legal words (taken as an example for the paper) filters
the words and a graph database with legal words in a document is created. Dictretained is a
benchmark graph database of legal words created by authors.

1. The dictionaries are created to preprocess the documents
 Dicteliminate and Dict retained
After step 1, two graphs will be created.

2. Pre-process the document that is to be tested
a. Eliminate the unnecessary words using the graph created in step one using Dictretained.
Read a line of the document, split the words, and remove the unwanted words using

the dictionary graph.
b. Retain relevant words using Retained words’ graph database in step 1.
Let Wn is the set of all retained words in a document. It can be explained as follows:

 𝑊𝑊𝑛𝑛 = ��𝐷𝐷𝐷𝐷𝐷𝐷𝑤𝑤𝑛𝑛𝑖𝑖 , 𝑓𝑓𝑛𝑛𝑖𝑖� � 𝐷𝐷𝐷𝐷𝐷𝐷𝑤𝑤𝑛𝑛(𝑖𝑖) ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 }𝑛𝑛∈(1,𝑙𝑙𝑛𝑛)�������� (1)

where 𝐷𝐷𝐷𝐷𝐷𝐷𝑤𝑤𝑛𝑛𝑖𝑖 is the i-th word of the n-th document, 𝑓𝑓𝑛𝑛𝑖𝑖 is its (word) frequency in the n-th
document, Dict retained is the dictionary of retained words, and ln is the length of the n-th
document.

Using equation (1), finally obtained retained words are stored using a graph database.
All the retained words are the nodes, and the relationship with the document are the edges
in the graph database. The figures given in section 4.5 show the snapshot of the graph
database.

 K-Graph: knowledgeable graph for text documents

77

3. Create Subgraphs based on the important attributes using (2). For example, if we store
a legal case in a graph database, the important attributes like the category of the case:
Indian Penal Code (IPC), Civil Procedure Code (CPC), Criminal Procedure Code
(CrPC) forms the head nodes. The properties of the data are stored as the attributes
(or properties) of the node. Sections related to the above-mentioned categories form
the leaf nodes. A relation is set between the category and the section. Further, the
cases related to the section fall within the relevant sections and a relationship is
established between the case and the section. The graph is further split from the
section to form the subgraphs. The subgraphs are split using equation (2).

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 = {𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 | 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛 }𝑖𝑖∈(1,𝐶𝐶)������� (2)

where Atrribi is the pre-given attribute of the database, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛 means that given
attribute characterises the document (i.e. if the document involves Indian Penal Code(IPC),
then IPC is stored as an attribute in the node) and C is the total number of all attributes.

4. Allocate weight to the nodes by calculating the arithmetic mean by using equation (3)

 𝑓𝑓̅ = ∑ 𝑓𝑓𝑖𝑖
𝑙𝑙
𝑖𝑖=1

∑ 𝑡𝑡𝑡𝑡𝑖𝑖𝑙𝑙
𝑖𝑖=1

 (3)

where fi is the frequency of a keyword in a document and tfi is the total number of extracted
words from the document. Thus, the properties stored with a node are specified in equation
(4):

 𝐾𝐾𝐾𝐾𝐾𝐾𝑛𝑛 = {𝑊𝑊𝑛𝑛 , 𝐷𝐷𝑛𝑛 ,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 , 𝑓𝑓 ̅} (4)

where Wn , Attrn , and 𝑓𝑓 ̅are described above in equation (1), (2) and (3) and Dn is the
document id.

3.3. Algorithm of K-Graph
The algorithm for the proposed methodology is specified in three parts. The first part

describes the creation of the main graph specified by algorithm 1 in a tab. 1. Fast Embedding
Referral Table (FERT) is created when the main graph database is split into sub-graphs.
FERT has the references for the main and subgraphs with keywords. It is an index of the
entire database. FERT is created so that the model can refer directly to the related sub-
graphs instead of traversing the entire database. This helps in cutting the traversing time
considerably. Algorithm 2 in a tab. 2 describes the creation of subgraph and updating the
FERT table. The algorithm 3 in a tab. 3 defines the traversal and searching the graph using
the referral table.

 Varsha Mittal, Durgaprasad Gangodkar, Bhaskar Pant

78

Table 1
Creating the main graph

Algorithm 1. Creating Main Graph
Create a Graph
ID set to zero
Root  ID, Name
While the end of the folder:
File  read file
Title  read the title
ID  +1
SubNode  [ID, Title]
[Contains] set relation with Root
Ltable ID, Title
While not end of File:
 If Heading1:
 ID  +1
 Sub1Create node
 Properties{Lev1_ID, Current_ID,Heading1}
 [Contains] set relation with SubNode
 Keyw Applying equations (1) to (2)
 Ltable  append [ID, Heading1, Keyw]
 if Heading2:
 ID  +1
 Sub2Create node
 Properties{Lev2_ID, Current_ID,Heading2}
 [Contains] set relation with Sub1
 Keyw Applying equations (2) to (4)
 Ltable2  append [Lev1_ID ,ID, Heading2, Keyw]
 End if
 End while
End while

Algorithm 1 shows the process of creating graphs. The process of creating the graphs

is simultaneously followed by creating the subgraphs. The referral table is updated
concurrently on the creation of the subgraph. The graph is created to store any document
with its headings and subheadings. For storing any document, SubNode is created with the
document’s title and the document Id as node embedding. The relation of this SubNode is
established with the root node. For every heading in the document, another SubNode is
created with its Lev_ID, Current_ID, Heading as node embedding. The referral table is
updated by appending the key weight as calculated in (3) represented by wt. The process
continues for all the headings in the document.

 K-Graph: knowledgeable graph for text documents

79

Table 2
Creating Subgraphs

Algorithm 2. Creating Subgraphs
Sub-Graph – I
Read FERT_table
Create subGraph
ID set to zero
n1
Root  ID, 'Level{n}'
Read FERT table
LID  Level ID //store Level ID of first record
While not end of FERT_table:
 If LID== Level ID
 Keyword  {Keyw}
 While key in Keyword:
 If unique(kw):
 Subcreate node
 ID+1
 Properties{ID,Key, wt}
 Keyword set relation with Root
 Else
 wt mean(Previous_wt ,current_wt)
 Update Properties
 End if
 End while
 Else:
 Create subGraph
 ID set to zero
 n=n+1;
 Root  ID, 'Level{n}'
 LID  Level ID
End while

Sub-Graphs
Until the FERT table has records sub-graphs will be created starting from Level1.

Algorithm 2 in tab. 2 shows the creation of subgraphs. The subgraphs are created by

taking level id from the referral table FERT. Before inserting a new node, the node for the
corresponding keyword is searched in the referral table; if found, the node embeddings and
the referral table are updated. Otherwise, a new node is created, and its relation is
established with the root node. The structure of the referral tables produced is shown below
in FERT_table1 in a tab. 3 and FERT_table2 in a tab. 4.

 Varsha Mittal, Durgaprasad Gangodkar, Bhaskar Pant

80

Table 3
FERT_table 1

Level 0 Level 1 Level 2 Keywords
0 1 {2,Name} 2.1
0 1 4 4.1
0 1 6 6.1

Table 4
FERT_table2

Level 3 Keywords
{2,3,Name,Kws} 3.1
{4,5,Name,Kws} 5.1

Algorithm 3 in tab. 5 shows the process of traversing the subgraphs whenever searched

for a particular keyword. All the subgraphs are traversed, and the target subgraph is
displayed.

Table 5
Traversing a Subgraph

Algorithm 3. Traversing a subgraph
SubGraph1 read Sub-Graph – I
SubGraph2 read Sub-Graph – II
Key_search  read keyword to be searched
If (match(keyword,SubGraph1)):
 Display {node name, weight}
Else If (match(keyword,SubGraphII)):
 Display {node name, weight}
Else
 Display  errors message
End If

3.4. Fast Embedding Referral Table (FERT)
The proposed referral table (FERT) maintains the list of extracted subgraphs headers

at a different level. It provides an efficient mechanism by reducing redundancy, memory
overhead and retrieval time. It supports fast update, searching and access to the target node.
The referral table components will be the subgraph heading (node id of the root of the
extracted subgraph) and the predecessors and successors of the corresponding root node id
of the stored subgraph. Along with the IDs, it would have keywords as well. This will make
the graphs Knowledgeable as each subheading maintains a link to its adjacent node and its
predecessor node. FERT provides an efficient method for inserting and deleting edge in the

 K-Graph: knowledgeable graph for text documents

81

graph. A new edge is initially searched for in the FERT. If found, it will not be inserted
again as FERT does not allow for multiple entries for the same edge. A relationship would
be established between the existing keyword and the level; also, the weight would be
incremented by one. Adding a new entry in the FERT includes the storage of the node id of
the subgraph node and also the storage of the embedding of all nodes at its next level. The
deletion of every node will result in the removal of all the relationships to the node, and the
counter is decremented by one. Maintenance of the FERT will eliminate the need for the
entire database retrieval and will reduce the retrieval time, as shown in the results.

4. Experimental evaluation

In this section, the proposed approach K-Graph is compared with the three basic
approaches Gspan [27], WARM [26] and GastonFSM [2].

Gspan technique carries out the iteration of subgraph generation from scratch after
each update in the input graph. The methodology of WARM works on the concept of
weighted association rule mining.

The GastonFSM keeps a list of each node's embedding. After evaluating the existing
embedding list, the new nodes are created. It has improved the performance of the
embedding generation system but has increased the traverse time as even for single
embedding; the whole chain has to be traversed.

In the further section, the proposed technique is compared with the above-mentioned
techniques with respect to efficiency, memory overhead and accuracy. The memory
overhead is computed in terms of the consumption of memory. Finally, the output of the
proposed algorithm in the form of a graph database is shown.

4.1. Experimental environment and datasets
The experiments are performed on Intel® Core TM i5-8th Gen 8250u CPU with 16

GB RAM with NVIDIA GeForce and 256 CUDA cores GPUs. Graph Database Neo4j has
been installed on Windows 10. Python and Pytorch 0.4.0 are taken as a programming
language.

The four actual datasets are used to conduct the experiments. The studies are carried
out on four different types of documents. The graphs are developed for the storage of
academic papers, thesis, books, and legal cases. “The number of documents considered is
10000. For the sake of the experiment, legal judgments are downloaded directly from the
web site of the Supreme court (indiankanoon.org). They are in PDF formats.

To assess the efficiency of the proposed model on other domains, we have also tested
on the thesis (library.stanford.edu), research papers (shodhganga.inibnet.ac.in) and books
(read.gov)”.

 Varsha Mittal, Durgaprasad Gangodkar, Bhaskar Pant

82

4.2. Efficiency
The efficiency of the proposed algorithm is compared with Gspan, WARM and

GastonFSM. Efficiency is evaluated in terms of time required for generating the graph along
with all the subgraphs and mining the entire graph. Figure 1 illustrates the result of the
efficiency comparison. The X-axis shows the different datasets used, and Y-axis shows the
elapsed time for the graph generation. The estimated time is calculated for a small subset of
data and then extrapolated for the entire dataset. The graph clearly shows that K-graph
outperforms in comparison to all the other three techniques. The result’s improvement is
due to the use of a referral table (FERT) since it eliminates the need for accessing the entire
graph again and again.

Fig. 1. Time comparison for graph generation

Gspan takes the maximum time as every subgraph generation is done from scratch.
Gaston FSM & WARM perform well when the graph is small. But with larger graphs, the
performance is depreciated since all the node embeddings are to be stored. And for larger
graphs, the embeddings become too large to store. This increases the memory requirement
and time taken; hence the efficiency is reduced.

0

1

2

3

4

5

6

T H E S I S R E S E A R C H
P A P E R

T E X T B O O K L E G A L
D O C U M E N T

TI
M

E
IN

 M
S

DIFFERENT DATASETS

TIME TAKEN
K-Graphs Gspan WARM GastonFSM

 K-Graph: knowledgeable graph for text documents

83

Fig. 2. Comparison of K-graph to other techniques

Figure 2 shows the comparison of K-graph to other techniques on improved
computation time. It shows that the K-graph performs 55.85% better than Gspan, 53.11%
better than WARM and 51.5% better than GastonFSM.

Fig. 3. Time taken to generate subgraphs

Efficiency can also be evaluated in terms of the time taken to generate the subgraphs
at different levels where the levels are taken from the FERT. Figure 3 shows the time taken
by different techniques to generate the subgraphs on the different datasets.

In K-graphs, the subgraphs are generated after searching the referral table at a previous
level, which reduces the time required to mine the entire workload. So it outperforms the
other three techniques. Figure 3 shows that K-graphs performs 56.42% better than Gspan,
48.9% better than GastonFSM and 44.07% better than WARM.

0

5

10

15

20

25

Total Time taken by different techniques

0

2

4

6

Thesis Research paper TextBook Legal DocumentTi
m

e
Ta

ke
n

in
 m

s

Different Datasets

Time Taken to generate subgraph

K-Graphs Gspan WARM GastonFSM

 Varsha Mittal, Durgaprasad Gangodkar, Bhaskar Pant

84

4.3. Memory overhead
The proposed algorithm is evaluated in terms of memory overhead. The memory

overhead is the memory required to store the subgraphs generated. The subgraphs are
generated according to the different subheadings of the target document.

Fig. 4. Memory overhead of different techniques

The graph in figure 4 shows the memory consumption for storing the subgraphs in
different techniques. The interesting point is that the memory consumption of the proposed
algorithm is not large at level 0, and level 1 since the subgraphs at level 0,1 are according
to headings and subheadings. At level 2, where the keywords are stored, the memory
consumption increases. But at level 4, only the relation to the existing node is established,
so finally, the memory consumption decreases and improves the K-graph’s performance.
The WARM has maximum memory consumption since the subgraph is always generated
from scratch. The histogram in fig. 5 below shows the comparison of the K-graph with the
other three techniques. It is observed that the memory consumption of the K-graph is less
since the FERT is maintained at different levels, which not only reduces the data
redundancy but also affects the memory requirement to a larger extent. As it maintains the
list of embeddings, the memory requirement for the FERT is insignificant compared to other
techniques. In the proposed approach, the list of embeddings is carefully reduced.

0

100

200

300

400

Level 0 Level 1 Level 2 Level 3

M
em

or
y

in
 K

B

Subgraphs

Memory Overhead During Subgraph
Creation

I-Miner GastonFM MomentFSM FullRecomp

 K-Graph: knowledgeable graph for text documents

85

Fig. 5. Improvement of K-graph over other techniques in memory overhead

The improvement of the proposed algorithm is shown in tab. 4 below, which signifies
the number of subgraphs reduced. Table 6 clearly shows the number of subgraphs that can
be created according to the subheadings in the legal case files and the number of subgraphs
that are actually created.

Table 6
Comparison of the number of subgraphs created

Legal Case file
Number of subgraph in
the document

Number of subgraph actually
created

GianSingh2012.pdf 7 7
AbdulvsRSNaya1991.pdf 6 5
GMtankvsstofguj2005.pdf 12 8
Narinderstofpunjab2014.pdf 20 15
NoidaentreNoidaors2007.pdf 15 11
Ranbhaivsstofgujarat2000.pdf 14 14
VikramvsstofMaharash2014.pdf 13 13

4.4. Accuracy
The improvement can also be evaluated in terms of Accuracy. Table 7 shows the

keywords extracted (TN) and the keywords stored in every subgraph (TP). The table shows
the keywords stored under the subgraph for the dataset [26]. Using these values, the
precision, recall, accuracy and F-score of the proposed algorithm is computed. From the

0
200
400
600
800

1000

To
ta

l m
em

or
y

re
qu

ire
m

en
t i

n
KB

Different Algorithm

Comparison of Different techniques for
memory overhead

 Varsha Mittal, Durgaprasad Gangodkar, Bhaskar Pant

86

table, it can be perceived that the accuracy of the proposed algorithm is approximately 99
per cent. It proves that the proposed algorithm is optimized to generate the subgraphs and
store the relevant keywords after removing redundancy.

Table 7
Computed values of Precision, Recall, Accuracy and F_score

Sub
graph TP FP TN FN Precision Recall Accuracy F-score
1 1024 0 1024 0 1 1 1 1
2 1012 0 1012 0 1 1 1 1
3 9862 0 9861 1 0.999898 1 0.99994 0.9999493

4 8013 0 8011 2 0.999750 1 0.99987 0.9998752
5 9776 0 9771 5 0.999488 1 0.99974 0.9997443

4.5. Results
Figure 6 shows a screenshot of the Level 1 graph created. The title of the document is

taken as the root node and Headers as its leaf nodes.

Fig. 6. Snapshot of graph database at level 1

Figure 7 shows a screenshot of the Level 2 graph. One of the headers has been
considered with keywords. Similar headers will not be added, only weight would be
incremented by one, and unique keywords would be added.

 K-Graph: knowledgeable graph for text documents

87

Fig. 7. Snapshot of level 2 graph database

5. Conclusions

The proposed algorithm allows for the careful classification of the text using the
database of Graphs. The findings clearly show that redundancy is reduced by more than 50
per cent, and even space is reduced by about 50 per cent. Because time is directly
proportional to the amount of space taken, lower space requirements resulted in lower
traverse time needed. FERT is one more plus. It is only used to search the Database, and is
updated periodically. K-graph can prove to be a revolution in the processing of natural
languages (NLP). The authors plan to refine the algorithm a little more in the future and
apply it to real-life case studies to determine its robustness. K-graph will help develop Bots,
Plagiarism software, electronic keyword library, educational browsers, and even design new
SAP software to generate fast queries.

 Varsha Mittal, Durgaprasad Gangodkar, Bhaskar Pant

88

6. References

1. Atastina I., Sitohang B., Saptawati G., Moertini V.S.: A Review of Big Graph Mining
Research. IOP Conf. Ser. Mater. Sci. Eng., 180, 12-16 , 2017.

2. Abdelhamid E., Canim M., Sadoghi M., Bhattacharjee B., Chang Y., Kalnis P.:
Incremental Frequent Subgraph Mining for Large Evolving Graphs. IEEE Transactions
on Knowledge and Data Engineering, 29, 12, 2017.

3. Dhiman A., Jain S.K..: Frequent subgraph mining algorithms for single large graphs
— A brief survey. International Conference on Advances in Computing,
Communication, Automation (ICACCA) (Spring), Apr. 2016.

4. Gee K.R., Cook D.J.: Text Classification Using Graph-Encoded Linguistic Elements.
In FLAIRS Conference, 487-492, 2005.

5. Geibel, Krumnack U., Pustylnikow O., Mehler A.: Structure-Sensitive Learning of
Text Types. Advances in Artificial Intelligence ,4830, 642-646, 2007.

6. Giarelis N., Kanakaris N., Karacapilidis N.: On a Novel Representation of Multiple
Textual Documents in a single Graph. Proceedings of International Conference on
Intelligent Decision Technologies IDT 2020, Split, Croatia, 105-115, 2020.

7. https://shodhganga.inibnet.ac.in.
8. https://library.stanford.edu/spc/universityarchives/dissertations-and-theses.
9. https://indiankanoon.org/browse/supremecourt/

10. http://read.gov/books/
11. Huan J., Wang J., Prins J.: Efficient mining of frequent subgraphs in the presence of

isomorphism. Third IEEE International Conference on Data Mining, 549–552, 2003.
12. Inokuchi A., Washio T., Motoda H.: An Apriori-Based Algorithm for Mining Frequent

Substructures from Graph Data. Proceedings of the 4th European Conference on
Principles of Data Mining and Knowledge Discovery, London, UK, UK,13–23, 2003.

13. Kang U., Tsourakakis C.E., Faloutsos C.: PEGASUS: A Peta-Scale Graph Mining
System Implementation and Observations. Ninth IEEE International Conference on
Data Mining, Miami Beach, FL, USA, Dec. 2009.

14. Kuramochi M., Karypis G.: Frequent Subgraph Discovery. Proceedings - IEEE
International Conference on Data Mining, ICDM, 313–320, 2010.

15. Kuramochi M., Karypis G.: GREW - a scalable frequent subgraph discovery algorithm.
IEEE International Conference on Data Mining (ICDM’04), 439–442, 2004.

16. Markov A.: Efficient Graph-based Representation of web Documents. Proceedings of
the Third International Workshop on Mining Graphs, Trees and Sequences, Potro
Portugal 52-62, 2005.

17. Markov A., Last M., Kandel A.: A Fast Categorization of Web Documents represented
by Graphs. Advances in Web Mining and Web Usage Analysis, 4811, 56-71, 2007.

18. Mukund D., Kuramochi M., Karypis G.: Frequent Sub-structur based Approaches for
Classifying Chemical Compounds, In Proceedings of the Third IEEE International
Conference on Data Mining, 2003.

https://shodhganga.inibnet.ac.in/
https://library.stanford.edu/spc/universityarchives/dissertations-and-theses
https://indiankanoon.org/browse/supremecourt/
http://read.gov/books/

 K-Graph: knowledgeable graph for text documents

89

19. Nijssen S., Kok J.N.: A Quickstart in Frequent Structure Mining Can Make a
Difference. Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA, 2004.

20. Paulheim H.: Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic Web, vol. 8, no.3, 489–508, 2016.

21. Pokorny J.: Integration of Relational and Graph Database Functionally. Foundation of
Computing and Decision Sciences, 44, 4, 427-441, 2019.

22. Schenker A.: Graph Theoretic Techniques for Web Content Mining, Phd Thesis,
University of South Florida, 2003.

23. Ramraj T., Prabhakar R.: Frequent Subgraph Mining Algorithms – A Survey. Procedia
Comput. Sci.,47, 197–204, 2015.

24. Rehman S.U., Khan A.U and Fong S.: Graph mining: A survey of graph mining
techniques. Seventh International Conference on Digital Information Management
(ICDIM 2012), 88–92, 2012.

25. Rehman S.U., Asghar S., Fong S.: An Efficient Ranking Scheme for Frequent
Subgraph Patterns. Proceedings of the 2018 10th International Conference on Machine
Learning and Computing, New York, NY, USA, 257–262, 2018.

26. Tao F., Murtagh F., Farid M.: Weighted Association Rule Mining Using Weighted
Support and Significant Framework. Proceedings of ACM International Conference on
Knowledge Discovery and Data Mining, USA, 2003.

27. Yan X., Han J.: gSpan: graph-based substructure pattern mining. IEEE International
Conference on Data Mining Proceedings, pp. 721–724, 2002.

28. Yan X., Han J.: CloseGraph: Mining Closed Frequent Graph Patterns. Proceedings of
the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, New York, NY, USA, 286–295, 2003.

 Varsha Mittal, Durgaprasad Gangodkar, Bhaskar Pant

90

	K-GRAPH: KNOWLEDGEABLE GRAPH FOR TEXT DOCUMENTS
	1. Introduction
	2. Related work
	3. K-Graphs
	3.1. Overview of K-Graphs approach
	3.2. Proposed methodology
	3.3. Algorithm of K-Graph
	3.4. Fast Embedding Referral Table (FERT)

	4. Experimental evaluation
	4.1. Experimental environment and datasets
	4.2. Efficiency
	4.3. Memory overhead
	4.4. Accuracy
	4.5. Results

	5. Conclusions
	6. References

<<

 /ASCII85EncodePages false

 /AllowPSXObjects false

 /AllowTransparency false

 /AlwaysEmbed [

 true

]

 /AntiAliasColorImages false

 /AntiAliasGrayImages false

 /AntiAliasMonoImages false

 /AutoFilterColorImages false

 /AutoFilterGrayImages false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CheckCompliance [

 /None

]

 /ColorACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorConversionStrategy /UseDeviceIndependentColor

 /ColorImageAutoFilterStrategy /JPEG

 /ColorImageDepth 8

 /ColorImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorImageDownsampleThreshold 1.50000

 /ColorImageDownsampleType /Bicubic

 /ColorImageFilter /FlateEncode

 /ColorImageMinDownsampleDepth 1

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /ColorImageResolution 300

 /ColorSettingsFile ()

 /CompatibilityLevel 1.5

 /CompressObjects /Off

 /CompressPages true

 /ConvertImagesToIndexed true

 /CreateJDFFile false

 /CreateJobTicket false

 /CropColorImages false

 /CropGrayImages false

 /CropMonoImages false

 /DSCReportingLevel 0

 /DefaultRenderingIntent /Default

 /Description <<

 /POL <FEFF005B004E006100200070006F006400730074006100770069006500200027004E006100730077006900650074006C00610072006E006900610027005D0020005B004E006100200070006F006400730074006100770069006500200027004E006100730077006900650074006C00610072006E006900610027005D00200055007300740061007700690065006E0069006100200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F300770020005000440046002000700072007A0065007A006E00610063007A006F006E00790063006800200064006F002000770079006400720075006B00F30077002000770020007700790073006F006B00690065006A0020006A0061006B006F015B00630069002E002000200044006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D006900650020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200035002E0030002000690020006E006F00770073007A0079006D002E>

 >>

 /DetectBlends true

 /DetectCurves 0

 /DoThumbnails true

 /DownsampleColorImages true

 /DownsampleGrayImages true

 /DownsampleMonoImages true

 /EmbedAllFonts true

 /EmbedJobOptions true

 /EmbedOpenType false

 /EmitDSCWarnings false

 /EncodeColorImages true

 /EncodeGrayImages true

 /EncodeMonoImages true

 /EndPage -1

 /GrayACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageAutoFilterStrategy /JPEG

 /GrayImageDepth 8

 /GrayImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageDownsampleThreshold 1.50000

 /GrayImageDownsampleType /Bicubic

 /GrayImageFilter /FlateEncode

 /GrayImageMinDownsampleDepth 2

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /GrayImageResolution 300

 /ImageMemory 1048576

 /JPEG2000ColorACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000ColorImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /LockDistillerParams true

 /MaxSubsetPct 100

 /MonoImageDepth -1

 /MonoImageDict <<

 /K -1

 >>

 /MonoImageDownsampleThreshold 1.50000

 /MonoImageDownsampleType /Bicubic

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /MonoImageResolution 1200

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /NeverEmbed [

 true

]

 /OPM 1

 /Optimize false

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /BleedOffset [

 0

 0

 0

 0

]

 /ConvertColors /NoConversion

 /DestinationProfileName (Coated FOGRA39 \(ISO 12647-2:2004\))

 /DestinationProfileSelector /NA

 /Downsample16BitImages true

 /FlattenerPreset <<

 /ClipComplexRegions true

 /ConvertStrokesToOutlines false

 /ConvertTextToOutlines false

 /GradientResolution 300

 /LineArtTextResolution 1200

 /PresetName <FEFF005B005700790073006F006B006100200072006F007A0064007A00690065006C0063007A006F015B0107005D>

 /PresetSelector /HighResolution

 /RasterVectorBalance 1

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles true

 /MarksOffset 6

 /MarksWeight 0.25000

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /UseName

 /PageMarksFile /RomanDefault

 /PreserveEditing true

 /UntaggedCMYKHandling /UseDocumentProfile

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

 <<

 /AllowImageBreaks true

 /AllowTableBreaks true

 /ExpandPage false

 /HonorBaseURL true

 /HonorRolloverEffect false

 /IgnoreHTMLPageBreaks false

 /IncludeHeaderFooter false

 /MarginOffset [

 0

 0

 0

 0

]

 /MetadataAuthor ()

 /MetadataKeywords ()

 /MetadataSubject ()

 /MetadataTitle ()

 /MetricPageSize [

 0

 0

]

 /MetricUnit /inch

 /MobileCompatible 0

 /Namespace [

 (Adobe)

 (GoLive)

 (8.0)

]

 /OpenZoomToHTMLFontSize false

 /PageOrientation /Portrait

 /RemoveBackground false

 /ShrinkContent true

 /TreatColorsAs /MainMonitorColors

 /UseEmbeddedProfiles false

 /UseHTMLTitleAsMetadata true

 >>

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXBleedBoxToTrimBoxOffset [

 0

 0

 0

 0

]

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXOutputCondition ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputIntentProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)

 /PDFXRegistryName ()

 /PDFXSetBleedBoxToMediaBox true

 /PDFXTrapped /False

 /PDFXTrimBoxToMediaBoxOffset [

 0

 0

 0

 0

]

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /ParseICCProfilesInComments true

 /PassThroughJPEGImages true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness false

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /sRGBProfile (sRGB IEC61966-2.1)

>> setdistillerparams

<<

 /HWResolution [2500 2500]

 /PageSize [612.000 792.000]

>> setpagedevice

