Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study presents the results of research on the process of geraniol (GA) transformation in the presence of natural minerals: montmorillonite, mironekuton, halloysite and also in the presence of halloysite modified with 0.1 M water solution of H2SO4. To obtain information on the structure of the used catalysts, instrumental studies were performed (SEM, XRD, FT-IR, XRF, BET). The second part of the research consisted in examining the influence of individual parameters (temperature, catalyst content, and reaction time) on the course of GA transformation process. The syntheses were carried out without the application of solvent and under atmospheric pressure. To determine the most beneficial process conditions, two functions were selected: GA conversion and selectivity of GA. The proposed method of GA transformation on such minerals: montmorillonite, mironekuton, halloysite, has not been described in the literature so far.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
47--60
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wz.
Twórcy
autor
- Jacob of Paradies University, Faculty of Technology, Chopina 52, Gorzow Wielkopolski, 66-400, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, Pułaskiego 10, Pl 70-322 Szczecin
autor
- Jacob of Paradies University, Faculty of Technology, Chopina 52, Gorzow Wielkopolski, 66-400, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, Pułaskiego 10, Pl 70-322 Szczecin
Bibliografia
- 1. Perec, A., Radomska-Zalas, A., Fajdek-Bieda, A. (2022). Modeling of High Pressure Abrasive Water Jet Cutting of Marble. Facta Universitatis, Series: Mech. Engin., 20, 145–156, DOI: 10.22190/FUME210203037P.
- 2. Fajdek-Bieda, A. (2021). Using Entropy-VIKOR Method in Chemical Processes Optimization. Proc. Comp. Sci., 192, 4208–4217, DOI: 10.1016/j.procs.2021.09.197.
- 3. Moein, M., Zarshenas, M.M. & Delnavaz, S. (2014). Chemical Composition Analysis of Rose Water Samples from Iran. Pharmac. Biol., 52, 1358–1361, DOI: 10.3109/13880209.2014.885062.
- 4. Fajdek-Bieda, A., Perec, A. & Radomska-Zalas, A. (2021). Orthogonal Array Approach Optimization of Catalytic Systems. Proc.Comp. Sci., 192, 4200–4207, DOI: 10.1016/j.procs.2021.09.196.
- 5. Hawari, H. F., Samsudin, N. M., Md Shakaff, A. Y., Ghani, Supri. A., Ahmad, M. N., Wahab, Y. & Hashim, U. (2013). Development of Interdigitated Electrode Molecular Imprinted Polymer Sensor for Monitoring Alpha Pinene Emissions from Mango Fruit. Proc. Engin., 53, 197–202, DOI: 10.1016/j.proeng.2013.02.026.
- 6. Nissen, L., Zatta, A., Stefanini, I., Grandi, S., Sgorbati, B., Biavati, B. & Monti, A. (2010). Characterization and Antimicrobial Activity of Essential Oils of Industrial Hemp Varieties (Cannabis Sativa L.). Fitoterapia, 81, 413–419, DOI: 10.1016/j.fi tote.2009.11.010.
- 7. Laird, K., Kurzbach, E., Score, J., Tejpal, J., Chi Tangyie, G. & Phillips, C. (2014). Reduction of Legionella Spp. in Water and in Soil by a Citrus Plant Extract Vapor. Applied. Environ. Microb., 80, 6031–6036, DOI: 10.1128/AEM.01275-14.
- 8. Russo, E.B. (2011). Taming THC: Potential Cannabis Synergy and Phytocannabinoid-Terpenoid Entourage Effects: Phytocannabinoid-Terpenoid Entourage Effects. British J. Pharmac., 163, 1344–1364, DOI: 10.1111/j.1476-5381.2011.01238.x.
- 9. Randrianarivelo, R., Sarter, S., Odoux, E., Brat, P., Lebrun, M., Romestand, B., Menut, C., Andrianoelisoa, H., Raherimandimby, M. & Danthu, P. (2009). Composition and Antimicrobial Activity of Essential Oils of Cinnamosma Fragrans. Food Chemistry, 114, 680–684, DOI: 10.1016/j.foodchem.2008.10.007.
- 10. Trytek, M., Paduch, R., Fiedurek, J. & Kandefer-Szerszeń, M. (2007). Monoterpenes – Old Compounds, New Applications and Biotechnological Methods for their Obtainment. Biotechnology, 76, 135–155 (in Polish).
- 11. Zdrojewicz, Z., Minczakowska, K. & Klepacki, K. (2014). The Role of Aromatherapy in Medicine. Family Medicine and Primary Care Review, 16, 387–391.
- 12. Yu, W., Wen, M., Yang, L. & Liu, Z. (2002). Ferric Chloride Catalyzed Isomerization and Cyclization of Geraniol, Linalool and Nerol. Chinese Chemical Letters, 13, 495–496.
- 13. Haese, F., Ebel, K., Burkart, K., Unverricht, S. & Münster, P. Method for Isomerizing Allyl Alcohols 2006.
- 14. Srivastava, P., Wagh, R.S. & Naik, D.G. (2010). γ-Irradiation: A Simple Route for Isomerization of Geraniol into Nerol and Linalool. Radiochemistry, 52, 561–564, DOI: 10.1134/S1066362210050206.
- 15. Tsitsishvili, V., Ramishvili, T., Ivanova, I., Dobryakova, I., Bukia, T. & Kokiashvili, N. (2018). Formation of Long-Chain and Macrocyclic Compounds during Catalytic Conversion of Geraniol on Micro-and Micro-Mesoporous BEA-Type Zeolite. Bulletin of the Georgian National Academy of Sciences, 12, 62–69.
- 16. Fajdek-Bieda, A., Wróblewska, A., Miądlicki, P., Szymańska, A., Dzięcioł, M., Booth, A. M. & Michalkiewicz, B. (2020). Influence of Technological Parameters on the Isomerization of Geraniol Using Sepiolite. Catalysis Letters , 150, 901–911, DOI: 10.1007/s10562-019-02987-1.
- 17. Fajdek-Bieda, A., Wróblewska, A., Miądlicki, P., Tołpa, J. & Michalkiewicz, B. (2021). Clinoptilolite as a Natural, Active Zeolite Catalyst for the Chemical Transformations of Geraniol. Reac. Kin. Mech. Catal., 133, 997–1011, DOI: 10.1007/s11144-021-02027-3.
- 18. Królikowski, W. & Rosłaniec, Z. Polymer Nanocomposites. Composites 2004, R. 4, nr 9, 3–15 (in Polish).
- 19. Bolewski, A., Budkiewicz, M. & Wyszomirski, P. Ceramic Raw Materials, Geological Publishers: Warsaw, 1991, ISBN 978-83-220-0412-8 (in Polish).
- 20. Sarbak, Z. Adsorption and adsorbents: theory and application, Chemistry, 1st ed., Adam Mickiewicz University: Poznań, 2000, ISBN 978-83-232-1108-2 (in Polish).
- 21. Costanzo, P.M. (1984). Static and Dynamic Structure of Water in Hydrated Kaolinites. I. The Static Structure. Clays and Clay Minerals, 32, 419–428, DOI: 10.1346/CCMN.1984.0320511.
- 22. Veerabadran, N. G., Price, R. R., Lvov, Y. M. (2007). Clay Nanotubes For Encapsulation And Sustained Release of Drugs. NANO, 02, 115–120, DOI: 10.1142/S1793292007000441.
- 23. Utracki, L.A. Clay-Containing Polymeric Nanocomposites, Rapra Technology Ltd: Shrewsbury, 2004, ISBN 978-1-85957-437-9.
- 24. Kuczyńska, H., Kamińska-Tarnawska, E. & Sołtys, J. (2011). Mineral from the “Dunino” Deposits as a Nanosurface for Obtaining Paints. Chem. Ind. 90, 138–147 (in Polish).
- 25. Joussein, E., Petit, S. & Delvaux, B. (2007). Behavior of Halloysite Clay under Formamide Treatment. Appl. Clay Sci., 35, 17–24, DOI: 10.1016/j.clay.2006.07.002.
- 26. Opaliński, S., Korczyński, M., Kołacz, R., Dobrzański, Z. & Żmuda, K. (2009). Use of Selected Aluminosilicates as Ammonia Adsorbents. Chem. Industry, 88, 5, 540–543 (in Polish).
- 27. Szczygielska, A. & Kijeński, J. (2010). Application of Haloysite as a Filler for Modification of Polypropylene. Part II. Studies of the Properties of the Obtained PP Composites with HNT. Composites, R.,2, 186–191 (in Polish).
- 28. Szczygielska, A., Kijeński, J. & Kozłowski, P. Polymer Modification. Status and Prospects in the Year 2009 (in Polish).
- 29. Zou, M., Du, M., Zhu, H., Xu, C. & Fu, Y. (2012). Green Synthesis of Halloysite Nanotubes Supported Ag Nanoparticles for Photocatalytic Decomposition of Methylene Blue. J. Phys.D: Appl. Phys., 45, 325302, DOI: 10.1088/0022-3727/45/32/325302.
- 30. Kamble, R., Ghag, M., Gaikawad, S. & Panda, B.K. (2012). Halloysite Nanotubes and Applications: A Review. J. Adv. Sci. Res. 3, 25–29.
- 31. Lvov, Y. & Abdullayev, E. (2013). Functional Polymer–Clay Nanotube Composites with Sustained Release of Chemical Agents. Progress in Pol. Sci., 38, 1690–1719, DOI: 10.1016/j.progpolymsci.2013.05.009.
- 32. Jinhua, W., Xiang, Z., Bing, Z., Yafei, Z., Rui, Z., Jindun, L. & Rongfeng, C. (2010). Rapid Adsorption of Cr (VI) on Modified Halloysite Nanotubes. Desalination, 259, 22–28, DOI: 10.1016/j.desal.2010.04.046.
- 33. Barrientos-Ramírez, S., Oca-Ramírez, G. M., Ramos-Fernández, E. V., Sepúlveda-Escribano, A., Pastor-Blas, M. M. & González-Montiel, A. (2021). Surface Modification of Natural Halloysite Clay Nanotubes with Aminosilanes. Application as Catalyst Supports in the Atom Transfer Radical Polymerization of Methyl Methacrylate. Appl. Catal. A: Gen., 406, 22–33, DOI: 10.1016/j.apcata.2011.08.003.
- 34. Zhang, J., Zhang, D., Zhang, A., Jia, Z. & Jia, D. (2013). Dendritic Polyamidoamine-Grafted Halloysite Nanotubes for Fabricating Toughened Epoxy Composites. Irian Pol. J., 22, 501–510, DOI: 10.1007/s13726-013-0151-5.
- 35. Bergaya, F. & Lagaly, G. (2006). Chapter 1 General Introduction: Clays, Clay Minerals, and Clay Science. In Developments in Clay Science, Elsevier, 1, 1–18, ISBN 978-0-08-044183-2.
- 36. Masters, A.F. & Maschmeyer, T. (2011). Zeolites – From Curiosity to Cornerstone. Micropor. Mesopor. Mater., 142, 423–438, DOI: 10.1016/j.micromeso.2010.12.026.
- 37. Armbruster, T. (1993). Dehydration Mechanism of Clinoptilolite and Heulandite: Single-Crystal X-Ray Study of Na-Pooro Ca-, K-, Mg-Rich Clinoptilolite at 100 K. American Mineralogist, 78, 260–264.
- 38. Handke, M. Crystal chemistry of silicates, AGH Uczelniane Wydawnictwa Naukowo-Techniczne: Kraków, 2005, ISBN 978-83-7464-016-9 (in Polish).
- 39. Szymańska, A. Increasing Microporosity of Mironecuton for CO2 Adsorption Process. In Advances in Chemical Technology and Engineering 2018, ZUT Szczecin, Polish Chemical Society: Szczecin, 2018 (in Polish).
- 40. Kiari, M., Berenguer, R., Montilla, F. & Morallón, E. (2020). Preparation and Characterization of Montmorillonite/PEDOT-PSS and Diatomite/PEDOT-PSS Hybrid Materials. Study of Electrochemical Properties in Acid Medium. J. Compos. Sci., 4, 51, DOI: 10.3390/jcs4020051.
- 41. Paciorek-Sadowska, J., Borowicz, M., Czupryński, B., Liszkowska, J., & Tomaszewska, E. (2021). Application of halloysite as filler in the production of rigid PUR-PIR foams. Polimery, 63(3), 185–190. DOI: 10.14314/polimery.2018.3.3 (in Polish).
- 42. Machnicka, A. & Nowicka, E. (2016). The use of halloy-site to reduce pollutions concentration in municipal wastewater. Ecol. Engin. & Environ. Technol., (50), 217–222. DOI: 10.12912/23920629/66853.
- 43. Kumar Dutta, D., Jyoti Borah, B., & Pollov Sarmah, P. (2015). Recent Advances in Metal Nanoparticles Stabilization into Nanopores of Montmorillonite and Their Catalytic Applications for Fine Chemicals Synthesis. Catal. Rev., 57(3), 257–305. DOI: 10.1080/01614940.2014.1003504.
- 44. Lendzion-Bieluń, Z., Moszyński, D. Advances in Chemical Technology and Engineering 2018, ZUT Szczecin, Polish Chemical Society: Szczecin, 2018, ISBN 978-83-7663-266-7 (in Polish).4
- 45. Pajdak, A., Skoczylas, N., Szymanek, A., Lutyński, M. & Sakiewicz, P. (2020). Sorption of CO2 and CH4 on Raw and Calcined Halloysite—Structural and Pore Characterization Study. Materials, 13, 917, DOI: 10.3390/ma13040917.
- 46. Szczepanik, B., Słomkiewicz, P., Garnuszek, M., Rogala, P., Banaś, D., Kubala-Kukuś, A. & Stabrawa, I. (2017). Effect of Temperature on Halloysite Acid Treatment for Efficient Chloroaniline Removal from Aqueous Solutions. Clay and Clays Minerals, 65, 155–167, DOI: 10.1346/CCMN.2017.064056.
- 47. Djowe, A. T., Laminsi, S., Njopwouo, D., Acayanka, E. & Gaigneaux, E. M. (2013). Surface Modifacation of Smectite Clay Induced by Non-Thermal Gliding Arc Plasma at Atmospheric Pressure. Plasma Chemistry and Plasma Processing, 33, 707–723, DOI: 10.1007/s11090-013-9454-8.
- 48. Borralleras, P., Segura, I., Aranda, M. A. G. & Aguado, A. (2019). Influence of Experimental Procedure on D-Spacing Measurement by XRD of Montmorillonite Clay Pastes Containing PCE-Based Superplasticizer. Cement and Concrete Research, 116, 266–272, DOI: 10.1016/j.cemconres.2018.11.015.
- 49. Kaufhold, S., Dohrmann, R., Ufer, K. & Meyer, F. M. (2002). Comparison of Methods for the Quantification of Montmorillonite in Bentonites. Appl. Clay Sci., 22, 145–151, DOI: 10.1016/S0169-1317(02)00131-X.
- 50. Milagres, J. L., Bellato, C. R., Vieira, R. S., Ferreira, S. O. & Reis, C. (2017). Preparation and Evaluation of the Ca-Al Layered Double Hydroxide for Removal of Copper(II), Nickel(II), Zinc(II), Chromium(VI) and Phosphate from Aqueous Solutions. J. Environ. Chem. Engin., 5, 5469–5480, DOI: 10.1016/j.jece.2017.10.013.
- 51. Wu, X., Liu, C., Qi, H., Zhang, X., Dai, J., Zhang, Q., Zhang, L., Wu, Y. & Peng, X. (2016). Synthesis and Adsorption Properties of Halloysite/Carbon Nanocomposites and Halloysite-Derived Carbon Nanotubes. Appl. Clay Sci., 119, 284–293, DOI: 10.1016/j.clay.2015.10.029.
- 52. Abdullayev, E., Price, R., Shchukin, D. & Lvov, Y. (2009). Halloysite Tubes as Nanocontainers for Anticorrosion Coating 60 Pol. J. Chem. Tech., Vol. 25, No. 1, 2023 with Benzotriazole. ACS Appl. Mater. Interf., 1, 1437–1443, DOI:10.1021/am9002028.
- 53. Bodeepong, S., Bhongsuwan, D., Bhongsuwan, T., Pungrassami, T. (2011). Characterization of Halloysite from Thung Yai Distric, Nackon Si Thammarat Province, in Shouthern Thailand. J. Sci. and Technol., 33, 599–607.
- 54. Zhang, A.-B., Pan, L., Zhang, H.-Y., Liu, S.-T., Ye, Y., Xia, M.-S. & Chen, X.-G. (2012). Effects of Acid Treatment on the Physico-Chemical and Pore Characteristics of Halloysite. Coll. Surf. A: Physicochem. Engin. Aspects, 396, 182–188, DOI: 10.1016/j.colsurfa.2011.12.067.
- 55. Akpomie, K.G. & Dawodu, F.A. (2016). Acid-Modified Montmorillonite for Sorption of Heavy Metals from Automobile Effluent. Beni-Suef University J. Basic and Appl. Sci., 5, 1–12, DOI: 10.1016/j.bjbas.2016.01.003.
- 56. Szczepanik, B., Słomkiewicz, P., Garnuszek, M., Czech, K., Banaś, D., Kubala-Kukuś, A. & Stabrawa, I. (2015). The Effect of Chemical Modification on the Physico-Chemical Characteristics of Halloysite: FTIR, XRF, and XRD Studies. J. Molec. Struc., 1084, 16–22, DOI:10.1016/j.molstruc.2014.12.008.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6e8ca00-9a34-46fe-8fed-0c44701e3254