Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Modification of cast double base propellants is somewhat of an art form. Obtaining a final propellant grain that has the right balance between energetic liquids and solid ingredients with the desired properties requires great effort. Four formulations of a modified cast double base propellant with different RDX contents have been prepared. A combination of BuNENA and DNDA57 energetic plasticizers has been used to overcome the problems that occur with a high nitroglycerin content. The effect of the RDX content on the burning behaviour, activation energies, and sensitivity to impact has been studied. Burning rate measurements have been performed using a closed bomb SV-2 to investigate the burning behaviour under a wide range of operating pressures. DTA and DSC thermal analysis were conducted to evaluate the thermal behaviour of the prepared modified double base propellants. The results showed that the formulation with only the combined plasticizer has the highest burning rate and activation energy and the lowest sensitivity to impact.
Słowa kluczowe
Rocznik
Tom
Strony
485--500
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
autor
- OZM Research, s.r.o., Bliznovice 32, 538 62 Hrochuv Tynec, Czech Republic
autor
- Explosia, a.s., Semtin 107, 530 02 Pardubice, Czech Republic
autor
- Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
Bibliografia
- [1] Agrawal, J. P.; Singh, H. Qualitative Assessment of Nitroglycerin Migration from Double-base and Composite Modified Double-base Rocket Propellants: Concepts and Methods of Prevention. Propellants Explos. Pyrotech. 1993, 18(2):106-110.
- [2] Austruy, H. Double-base Propellants. In: Solid Rocket Propulsion Technology (Davenas, A., Ed.), Pergamon Press, Oxford, UK, 1992, pp. 404-405; ISBN: 978- 0080409993.
- [3] Reese, D. A.; Groven, L. J.; Son, S. F. Formulation and Characterization of a New Nitroglycerin-free Double Base Propellant. Propellants Explos. Pyrotech. 2014, 39(2): 205-210.
- [4] Sun, C.; Xu, J.; Chen, X.; Zheng, J.; Zheng, Y.; Wang, W. Strain Rate and Temperature Dependence of the Compressive Behavior of a Composite Modified Double-base Propellant. Mech. Mater. 2015, 89: 35-46.
- [5] Wu, X.-G.; Yan, Q.-L.; Guo, X.; Qi, X.-F.; Li, X.-J.; Wang, K.-Q. Combustion Efficiency and Pyrochemical Properties of Micron-sized Metal Particles as the Components of Modified Double-base Propellant. Acta Astronaut. 2011, 68: 1098-1112.
- [6] Yan, Q.-L.; Li, X.-J.; Wang, Y.; Zhang, W.-H.; Zhao, F.-Q. Combustion Mechanism of Double-base Propellant Containing Nitrogen Heterocyclic Nitroamines (I): the Effect of Heat and Mass Transfer to the Burning Characteristics. Combust. Flame 2009, 156: 633-641.
- [7] Schack, C. J.; Flanagan, J. E. Alkyl, Azido, Nitro Ethers and Method of Preparation. Patent US 4522756 A, 1985.
- [8] Witucki, E. F.; Flanagan, J. E. Azido Esters. Patent US 4419286 A, 1983.
- [9] Ou, Y.; Chen, B.; Yan, H.; Jia, H.; Li J.; Dong, S. Development of Energetic Additives for Propellants in China. J. Propul. Power. 1995, 11(4): 838-847.
- [10] Cohen, N. S.; Lo, G. A. Combustion Chemistry of Nitrate Ester-based Propellants. AIAA, 19th JANNAF Combustion Meeting, 1983, 1183-1198.
- [11] Cartwright, R. V. Volatility of NENA and Other Energetic Plasticizer Determined by Thermogravimetric Analysis. Propellants Explos. Pyrotech. 1995, 20(2): 51-57.
- [12] Howard, W. M. Triaminoguanidine Nitrate-containing Propellants. Patent US 4381958 A, 1983.
- [13] Fang, L. A.; Hua, S. Q.; Xin, L.; Ling, V. G. Preliminary Study of BuNENA Gun Propellants. 27th Int. Conf. ICT, Karlsruhe, 1996, 51.1-51.11.
- [14] Johnson, R. J.; Mulley, J. Stability and Performance Characteristics of NENA Materials and Formulations. Joint International Symposium on Energetic Materials Technology, New Orleans, Louisiana, 1992, 116-124.
- [15] Silver, P. A.; Stanley, N. F. BuNENA Gun Propellants. 2nd JANNAF Propulsion Meeting, 1990, 515-522.
- [16] Damse, R. S.; Omprakash, B.; Tope, B. G.; Chakraborthy, T. K.; Singh, A. Study of N-n-Butyl-N-(2-nitroxyethyl)nitramine in RDX Based Gun Propellant. J. Hazard. Mater. 2009, 167(1-3): 1222-1225.
- [17] Wagner, C.; Heeb, G.; Klapotke, T. M.; Krumm, B.; Steemann, X.; Weigand, J., A New Energetic Material - from the Laboratory Synthesis to the Technical Production. 38th Int. Conf. ICT, Karlsruhe, 2007, 52.1-52.9.
- [18] Wang, L.; Liu, F.; Shang, B.; Xue, J.; Wang, W.; Zhang, D.; Han, S. Research Progress in Synthesis, Properties and Applications of Linear Dinitramine Energetic Plasticizers. Huaxue Tuijinji Yu Gaofenzi Cailiao 2012, 10(1): 48-59.
- [19] Hildebrandt, F. J.; Simmons, R. L.; Manning, T. G. Single-base Propellant Composition Using BuNena as Energetic Plasticizer. Patent US 7862668 B1, 2011.
- [20] Schaller, U.; Weiser, V.; Keicher, T.; Krause, H. Investigation of the Nitrate Based EIL 4-Amino-1-methyl-1,2,4-triazolium Nitrate as a Plasticizer. 45th Int. Conf. ICT, Karlsruhe, 2014, 100.1-100.9.
- [21] Steinberger, R.; Drechsel, P. D. Manufacture of Cast Double-base Propellant. Advances in Chemistry Series 1969, 88: 1-28.
- [22] Chen, X.; Liu, X.; Wei, H. Study on Effect of Different Processing Conditions on Combustion Performance of Cast-CMDB Propellants. Chinese Journal of Explosives and Propellants 1998, 21: 10-12.
- [23] Leciejewski, K. Z. Oddities in Determining Burning Rate on Basis of Closed Vessel Tests of Single Base Propellant. J. Theor. Appl. Mech. 2014, 52(2): 313-321.
- [24] Yilmaz, N.; Donaldson, B.; Gill, W. Solid Propellant Burning Rate from Strand Burner Pressure Measurement. Propellants Explos. Pyrotech. 2008, 33(2): 109-117.
- [25] Stojan, P. The Use of Low Pressure Closed Vessel and Rocket Motor for Measurements of Burning Rate of Rocket Solid Propellants. New Trends in Res. of Energ. Mater., Proc. Semin. 9th, Pardubice, Czech Republic, 2006, 730-735.
- [26] Krupka, M. Devices and Equipment for Testing of Energetic Materials. New Trends Res. Energ. Mater., Proc. Semin. 4th, Pardubice, Czech Republic, 2001.
- [27] Kissinger, H. E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29: 1702-1706.
- [28] Ksiazczak, A.; Radomski, A.; Zielenkiewicz, T. Nitrocellulose Porosity – Thermoporometry. J. Therm. Anal. Calorim. 2003, 74(2): 559-568.
- [29] Ettre, K.; Varadi, P. Pyrolysis-gas Chromatographic Technique, Effect of Temperature on Thermal Degradation of Polymers. Anal. Chem. 1963, 35(1): 68-73.
- [30] Huwei, L.; Ruonong, F. Studies on Thermal Decomposition of Nitrocellulose by Pyrolysis – Gas Chromatography. J. Anal. Appl. Pyrolysis 1988, 14( 2-3): 163-169.
- [31] Song, X.D.; Zhao, F.Q.; Liu, Z.R.; Pan, Q.; Luo, Y. Thermal Decomposition Mechanism, Non-isothermal Reaction Kinetics of Bismuth Citrate and its Catalytic Effect on Combustion of Double-base Propellant. Chemical Journal of Higher Educational Institutes 2006, 27(1): 125-128.
- [32] Hu, R. Z.; Gao, S. L.; Zhao, F. Q.; Shi, Q. Z.; Zhang, T. L.; Zhang, J. J. Thermal Analysis Kinetics. (in Chinese), 2nd ed., Science Press, Beijing, 2008; ISBN: 7-03- 00946- 3/O.1511.
- [33] Yi, J. H.; Zhao, F. Q.; Xu, S. Y.; Gao, H. X.; Hu, R. Z.; Hao, H. X.; Pei, Q.; Gao. Y. Nonisothermal Thermal Decomposition Reaction Kinetics of Double-base Propellant Catalyzed with Lanthanum Citrate. Acta Physico-Chimica Sinica 2007, 23(9): 1316-1320.
- [34] Suceska, M. Testing Methods of Explosives. Springer, Heidelberg, 1995; ISBN 978-1-4612-6904-5.
- [35] Zeman, S.; Gazda, Š.; Štolcová, A.; Dimun, A. Dependence on Temperature of the Results of the Vacuum Stability Test for Explosives. Thermochim. Acta 1994, 247(2): 447-454.
- [36] Chovancová, M.; Zeman, S. Study of Initiation Reactivity of Some Plastic Explosives by Vacuum Stability Test and Non-isothermal Differential Thermal Analysis. Thermochim. Acta 2007, 460(1-2): 67-76.
- [37] Liau, Y. C.; Yang, V. Analysis of RDX Monopropellant Combustion with Two-Phase Subsurface Reactions. J. Propul. Power. 1995, 11(4): 729-739.
- [38] Yano Y.; Kubota, N. Combustion of HMX-CMDB Propellants. Propellants, Explos. Pyrotech. 1985, 10: 192-196.
- [39] Singh, H. Combustion Mechanism of Nitramine Based Solid Rocket Propellants. 32th Int. Conf. ICT, Karlsruhe, 2001, 15.1-15.6.
- [40] Pourmortazavi, S.; Hosseini, S.; Rahimi-Nasrabadi, M.; Hajimirsadeghi, S.; Momenian, H. Effect of Nitrate Content on Thermal Decomposition of Nitrocellulose. J. Hazard. Mater. 2009, 162: 1141-1144.
- [41] Sovizi, M.; Hajimirsadeghi, S.; Naderizadeh, B. Effect of Particle Size on Thermal Decomposition of Nitrocellulose. J. Hazard. Mater. 2009, 168: 1134-1139.
- [42] Friedman, H. L. Kinetics of Thermal Degradation of Char-forming Plastics from Thermogravimetry – Application to a Phenolic Resin. J. Polym. Sci. 1964, 6: 183-195.
- [43] Ozawa, T. Applicability of Friedman Plot. J. Therm. Anal. 1986, 31(3): 547-551.
- [44] Vyazovkin, S.; Burnham, A. K.; Criado, J. M.; Perez-Maqueda; Luis A.; Popescu, C.; Sbirrazzuoli, N.. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta 2011, 520(1- 2): 1-19.
- [45] Musil, T.; Matyáš, R.; Vala, R.; Růžička, A.; Vlček, M. Silver Salt of 4,6-Diazido-N-nitro-1,3,5-triazine-2-amine – Characterization of this Primary Explosive. Propellants Explos. Pyrotech. 2014, 39 : 251-259.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6e89496-f39b-4e5e-ac05-da343cffe9f7