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Abstract - There is an attention shift within the 

gaming industry toward the more natural behavior of 

nonplaying characters. The first part of this paper says 

about the main concepts of agent and multi-agent systems. 

The main part of this paper describes the main problem in 

any multi-agent system, agent communication. Then we 

write about main concepts of designing multi-agent 

gameplay and describes own developed MAS game 

simulator. 
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INTRODUCTION 

Over the past ten years, the development of 

telecommunication technologies has led to creating new 

concepts of distributed and intelligent software systems. 

Such systems are implemented in different ways, but 

multi-agent systems (MAS) concentrate all the properties 

which are necessary for technologies which are needed to 

design and develop simulation systems and game systems 

with proper artificial intelligence [1-3, 21-23]. The results 

from the introduction of agent technologies confirm the 

promise of this direction. Technology and the theory of 

agents continue to evolve through research and 

commercial projects. Particular attention is paid to the 

integration of methods of artificial intelligence [3], which 

until now have been used mainly in studies. Systems with 

decentralized management are built on the basis of 

autonomous, environmentally adaptable agents (active 

elements) that achieve systemic goals through local 

information exchange and coordination [1, 17-20, 24-26]. 

The more complex the games become and the more 

elaborate the interactions between the characters during 

the game, the more difficult it will become to design these 

characters without the use of specialized tools geared 

toward implementing intelligent agents in a modular way 

[6, 14, 15]. The main issue of this paper is thus, given that 

it makes sense to use ideas from agent research in gaming, 

as seems to be supported by the growing amount of work 

in games that incorporates agent concepts and 

technologies, what would be necessary to make use of the 

agent technology as developed for the multi-agent 

platforms. 

BASIC CONCEPTS AND PROPERTIES OF THE 

AGENT 

There is no clear definition of the term of the agent. 

All available definitions are based on the scope of agents. 

Such scopes are artificial intelligence, software 

development, the field of study, computer science, 

engineering, etc. [4]. Each agent is a process that has a 

sufficient amount of knowledge about the object and the 

ability to share this knowledge with other agents. In terms of 

the object-oriented approach, an agent can be considered as 

a set of functions in combination with an interface that is 

capable of sending replies and receiving information. You 

can also define the agent as a computer program that 

executes asynchronously in accordance with the behavior 

of a particular person or organization. Today, there are two 

main types of agents: stationary and mobile [8]. An agent 

can be perceived as a constituent system that responds to the 

environment through the sensors and acts on it through the 

effector [1]. According to this definition, the agent is any 

entity (physical or virtual) that is experiencing its 

environment and performs certain actions. 

Physical are called agents that directly through the 

controllers are in contact with the external environment 

and parts of its own system [5]. 

Virtual agents are agents who, through software that 

only receives data from the sensors, sends data to the 

server and, when it received, gives the tasks to the 

physical agent [6]. 

In most cases, the agents are the combination of 

physical and virtual components. Using this information, 

we can formulate a more proper definition: "Autonomous 

agents are computing systems included in some complex 

dynamic system that contact the environment through 

sensors, the senders, sending data to the server through a 

virtual component and following the instructions 

received" [5]. Figure 1 depicts the scheme of the agent's 

operation. 

In addition to touch inputs, actions, and goals, the 

agent may include domain knowledge (knowledge of a 

specific environment or issues to be addressed). This 

knowledge can be algorithmic, based on methods of 



22 V. TESLYUK, A. LOZUNSKYI, T. TESLYUK, P. DENYSYUK 
 

artificial intelligence, heuristics, etc. The notion of the 

environment includes a physical system, operating system, 

internet, or perhaps some of these systems are combined. 

 
Fig.1 Scheme of the agent's operation 

If the agent responds simultaneously to changes in 

the environment and converts received sensory data into a 

certain action, this agent is known as reactive (sometimes 

called reflex agent). Usually, reactive agents [1, 3] do not 

store the internal state, after receiving any data this agent 

immediately affects the environment. On the other hand, if 

the agent maintains the internal state and implies the 

consequences of his actions, this agent is called the 

trained agent [1]. Figure 2 depicts the functional scheme 

of the reactive agent, and in Figure 3 depicts the 

functional scheme of the agent having the property of 

learning. The first step in developing a multi-agent system 

is to select the properties of the agents. 

 
Fig.2 Functional scheme of the reactive agent, 

https://en.wikipedia.org/wiki/Multi-agent_system 

 
Fig.3 Functional scheme of the trained agent, 

https://en.wikipedia.org/wiki/Multi-agent_system 

THE MAIN PROPERTIES AND CLASSIFICATION OF 

MULTI-AGENT SYSTEMS 

Multi-agent systems is a powerful tool for solving 

tasks that are impossible or not profitable with the help of 

one agent. Multi-agent systems have the following 

properties [7]: 

1. Autonomy - the ability when agents can resolve 

their tasks without human intervention. 

2. Social - the ability to live in the community of 

agents and exchange data with other agents. 

3. Reactivity - the ability to perceive the state of the 

environment and respond in a timely manner to changes in 

a given environment. 

4. Internal activity - the ability to take the initiative, 

that is, not only react to external events, but also generate 

goals and act rationally for their achievement. 

The fact that agents within the MAS work together 

means that such cooperation is individual for each system. 

However, the concept of cooperation in multi-agent 

systems is the most complex part of all MAS and it is 

more problematic than in the case of agents, which makes 

data systems complex and individual. 

There is an infinite number of simulators, games, 

systems that are designed with the basic principles of 

multi-agent systems. All systems have their advantages 

and disadvantages, therefore it is customary to classify 

them according to certain properties and tasks facing the 

multi-agent system. Multi-agent systems are classified into 

[9]: 

1. Discretely independent multi-agent systems. 

2. Independent MAS without cooperation. 

3. Cooperative multi-agent systems. 

Discretely independent multi-agent systems are found 

in environments that enable the task to be solved without 

the communication of agents. As an example of this type, 

we can use two agents (controllers) that control the 

synchronous generator in the power grid: the automatic 

voltage regulator (AVR) and the speed controller. They 

have different goals that are not related to each other [10]. 

Independent MAS without cooperation are 

developed independently and each individual agent 

pursues his or her own goals independently of others. It is 

important to emphasize that in these multi-agent systems, 

agents are not aware of the existence of other agents, and 

each agent considers others as part of the environment. 

Since agents exist in the same environment and perceive 

each other as unknown environments, agents can 

accomplish one goal without knowing about 

collaboration, but they can also interfere with each other's 

tasks. Collaboration between independent agents may 

occur in two ways [11]: 1) Individual agents may receive 

information about another agent as sensory data. 2) 

Separate agents can receive as touch data information 

about the task performed by an unknown agent and thus 
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perform another task. This type of multi-agent systems is 

used in systems where agents perform the same tasks. 

Cooperative MAS is the systems that know about 

other agents in the system and this agent communicate 

with others in various ways [8]. 

AGENT COMMUNICATION 

In multi-agent systems that consist of many 

autonomous agents, negotiations are a key form of 

interaction that allows agent groups to reach a reciprocal 

agreement, for example, with respect to some idea, 

purpose, or plan. Communication between agents can be 

achieved in a similar fashion as actions and perception of 

the agent. Sending a message consequently requires 

describing the pre- and postconditions. There are three 

main topics for negotiating research [6]: 

Protocols of negotiations - a set of rules that govern 

the interaction. They determine the permissible types of 

participants, negotiate, events causing transitions to other 

states and acceptable actions of participants in certain 

states. 

Negotiations are the range of issues that should be 

agreed upon. These can be, as simple problems, as 

complex problems [11]. Permissive operations on these 

subjects are also relevant. In the simplest case, the 

structure and content of the agreement are established and 

the negotiations seek to accept or reject the proposal. A 

more complex case involves flexibility in order to change 

the significance of the problem in the negotiation, through 

counteroffers, changing the structure of the subject of 

negotiations. 

Models of consideration of agents - provides a 

decision-making machine through which the participants 

try to achieve their goal. The complexity of the model is 

determined according to the protocol used, the nature of 

the subject of negotiations and the range of operations that 

can be performed on it. 

Negotiations in the MAS may contain complex 

considerations of a high level. In order to create a 

practical use, a low-level basic infrastructure is very 

important. For example, any formally-based negotiation 

protocol should deal with a loss of communications or the 

elimination of one of the negotiating partners. 

Indeed, low-level communication languages control 

classes of conversations in which pair of agents can 

participate. The components of conversations are 

determined not only by the indicated action but also 

according to the preconditions, postures, and conditions of 

the completion of this speech act [5]. They determine the 

circumstances under which communication may occur and 

include the status of the submission of the agents 

concerned. 

In order for the negotiations to be completed 

successfully, all involved parties should clearly 

understand the rules of the protocol negotiations or 

commitments. Indeed, low-level communication 

languages control classes of conversations in which pair 

of agents can participate. The components of 

conversations are determined not only by the indicated 

action but also according to preconditions, post-words, 

and conditions of the completion of this speech act. They 

determine the circumstances under which communication 

may occur and include the status of the submission of the 

agents concerned. 

Receiving a message is controlled by an agent 

subscribing to messages and by the game engine when it 

determines that an agent can sense an action. In this case, 

we do not only specify the agreement between agent and 

game engine but also between agents. So there are three or 

more parties that need to conform to the agreement 

instead of two in the previous case. We will call this 

agreement the agent communication model (ACM) [4]. 

The definition of the ACM will contain the type of 

things that can be communicated (communication content 

representation) between agents. This representation is 

only relevant to the agents in the game. The ACM also 

specifies when communication can take place 

(qualification representation). This specifies the impact of 

the environment on communication. For instance, if an 

agent is far away, it may not be able to communicate. 

These factors are relevant to the game engine that is 

responsible for simulating the environment. 

There already exists a formalism that provides a 

communication content representation. It provides a way 

to communicate such things as beliefs among agents or 

propose an action or communicate with multiple agents. 

Within the FIPA standard [11], these communicative acts 

are already defined. We propose to use the FIPA standard 

to establish a game-specific message structure. For 

example, in our firefighting game, agent A may propose to 

agent B that A opens the door to the building: 

(propose 
: sender  
    (agent-identifier:name A) 
:receiver  
    (set (agent-identifier:name B)) 
:content 
    “((action A (open door))” 
: ontology Fire-fighting 
:In-reply-to proposal2 
: language Fipa-so) 
 
The message is translated to the concepts internal to 

both the agent and the game engine. The game engine 

will, upon reception of the above message, send this 

message to agent B and automatically subscribe agent A 

to the communication messages of agent B. This is 

because agent A and B can now be said to be in a 

dialogue and it is likely that agent A would like to receive 

an answer. The game could progress such that agent B 

replies affirmatively and the game engine receives an 

action from agent A to open the door and an action from 

agent B to go through the door. The game engine will now 

have enough information to know that this is a 
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coordinated action and that the order of actions (as 

implied by the dialogue) is to process the door opening 

action first and the movement action second. The game 

engine, therefore, takes these messages from the incoming 

actions queue and processes these together (coordinated) 

and in the right order [12]. 

To describe the impact of the environment on 

communication, we have to augment the linguistic 

representation with information about the environment. 

Since communication is a form of action, the same 

qualification representation needs to be made explicit. 

These qualification rules will also need to specify the 

ramifications of communication. This allows us, on the 

one hand, to specify what is needed when agents want to 

communicate (e.g., that they are close together) and on the 

other hand the (side) effects of communication (e.g., if 

other agents than the message recipient are nearby they 

too may receive the message): 

Get: Poss(Send(Propose(Action,Agent))) 
  Dist(Agent)<5 
POST: Done(Send(Propose(Action,Agent))) 
  Dist(Agent')<5  
 Poss(Receive(Propose(Action,Agent))) 
 

DESIGNING GAME SIMULATION 

The designing game simulation consists of two main 

part: Client-side, Server-side. 

Client-side(gamebots) has been created as a research 

platform for making the connection between agent 

research and a computer game, namely, the Unreal 

Tournament environment, and is one of the most used 

client-side implementations. In client-side approaches, 

agents are running as completely separate programs from 

the server and are usually communicating through network 

sockets. Network communication between agents and 

other external software programs has been successfully 

used in other multi-agent systems. Gamebots was 

designed for educational purposes, and therefore, multiple 

client implementations have been created, for example, 

one using the scripting language TCL, a SOAR bot, and a 

JAVA-based implementation [7].  

Figure 4 shows a diagram of the different Gamebot 

modules in combination with the JAVAbot extension. The 

Gamebot API forms the extension to Unreal Tournament 

that is needed to connect a client-side program to the 

Unreal Tournament. The JAVAbot API is the client side 

of the coupling. Having a general JAVA API on this side 

facilitates the connection to most agent platforms because 

they are usually also JAVA based. Information is sent 

from the game engine to the agents through the Gamebot 

and JAVAbot APIs by two types of messages: 

synchronous and asynchronous messages [6]. The 

synchronous messages are sent at a configurable interval. 

They provide information about the perceptions of the bot 

in the game world and a status report of the bot itself. 

Asynchronous messages are used for events in the game 

that occur less often and are directly sent to the agent. 

 
Fig.4 Client-side bots architecture in game design [7] 

The Gamebots is actually not a pure client-side 

solution because the server is also modified to supply a 

special world representation to the bot. There are some 

pure client agent implementations, but they are usually 

only created for cheating purposes. In this case, the 

processing of the data is done in the bot itself because it 

pretends to be a human client game. Doing this filtering 

on the server is more efficient because only the useful 

information needs to be communicated. This server 

modification, the Gamebots network API, performs a 

similar task and for similar reasons as the area awareness 

system in game simulation. This clarifies why the 

Gamebot API is specific for Unreal Tournament; it needs 

to know the internal representation of the game world in 

order to make the translation (efficiently) [12]. 

The Gamebot API does not provide information 

about the complete environment, but only about objects 

that are perceivable by the bot. Thus, if a bot wants to 

gather information about the complete environment, it has 

to (physically) explore it. To navigate, for example, the 

agent receives information about predefined navigation 

nodes in the game map, but only the currently observable 

nodes are returned. The agent thus does not know what 

exists around the corner, let alone that it can reason about 

it. Due to the representation choices made in Gamebots, 

information about the environment has to be stored at the 

agent side of the system [11]. This results in large 

differences between the agent’s representation of the 

environment and the actual environment of the game 

engine. For complex bots, the information provided by the 

Gamebot API quickly becomes too limited to make 

intelligent decisions. For example, the agent cannot know 

the spawning location of a certain power-up, and 

therefore, it cannot plan to go there. 

The Gamebot API does not provide information 

about the complete environment, but only about objects 

that are perceivable by the bot. Thus, if a bot wants to 

gather information about the complete environment, it has 

to (physically) explore it. To navigate, for example, the 

agent receives information about predefined navigation 

nodes in the game map, but only the currently observable 

nodes are returned. The agent thus does not know what 

exists around the corner, let alone that it can reason about 

it. Due to the representation choices made in Gamebots, 

information about the environment has to be stored at the 

agent side of the system. This results in large differences 

between the agent’s representation of the environment and 

the actual environment of the game engine. For complex 

bots, the information provided by the Gamebot API 

quickly becomes too limited to make intelligent decisions. 



DESIGNING MULTI-AGENT GAMEPLAY    25 
 

For example, the agent cannot know the spawning 

location of a certain power-up, and therefore, it cannot 

plan to go there [9]. 

In the most games, the agents are completely 

integrated in the default game loop in the same way as the 

physics engine, the animation engine, and rendering 

engine. The agent’s decisions are defined by a sequence 

of method calls, and the methods return the action that has 

to be performed at that time step. Direct method calls can 

be used for many different decision-making processes, for 

example, hard-coding approaches, directly specifying 

what to return with a certain input; fuzzy logic, mapping 

the right output to a certain set of input variables; or finite 

state machines, identifying the situation the agent is in and 

executing the corresponding method call. Independent of 

the particular decision-making strategy, the whole process 

is completely synchronized [1]. This limits the complexity 

of behavior because in a synchronized process all 

decisions have to be made within one-time step, and 

complex decisions would slow down a game too much. 

Figure 5 gives an impression of the implementation 

of agents in games simulation. On the lowest level in the 

figure, a translation from the raw engine data to a 

representation more suitable for agents has been created, 

called the area awareness system (AAS). The heart of the 

AAS is a special 3D representation of the game world that 

provides all the information relevant to the bot. The AAS 

informs the bot about the current state of the world, 

including information relevant to navigation, routing, and 

other entities in the game. The information is formatted 

and preprocessed for fast and easy access and usage by 

the bot. For instance, to navigate the bot receives 

information from the AAS about the locations of all static 

items, and it can ask the AAS whether a certain location is 

reachable [7]. The AAS is responsible for route planning. 

The first level also executes the actual actions of the agent 

and facilitates the decision process of the agents. 

However, the agents are highly dependent on the data they 

can extract from the AAS, for example, an agent cannot 

decide to take another route to a certain item. To illustrate 

the importance of the linkage between the engine and the 

agents, this part constitutes over 50% of the entire agent 

code. 

 
Fig.5 Bot`s server-side architecture in the game design 

On the second and third levels of the architecture, the 

information from the AAS can be used to check whether 

the bot’s goals are reached or how far off they are. 

Depending on the character that a bot plays, the fuzzy 

logic control determines which of the possible paths the 

bot should start navigating. 

Little communication between agents takes place in a 

normal game. It is only used to assign roles in team play 

situations [5]. Communication is implemented by using 

the chat system for sending simple text messages. More 

cooperation between agents would require improved 

communication facilities. Moreover, currently, it is 

assumed that communication is always successful, which 

is usually not guaranteed in realistic mult-iagent scenarios. 

IMPLEMENTATION GAME SIMULATION 

Based on the main concepts of game designing, there 

was developed game simulation of “Bacterial War”. 

Several variants of agents, each of which has their 

reaction time and internal algorithm for analysis of the 

situation, are implemented in the work. Figure 6 is 

depicted as a general scheme of agents functions. 

 
Fig.6 Scheme of agent’s functionality 

The agent is responsible for choosing the direction of 

movement of groups of bacteria from a given colony. At 

one time, the colony can choose no more than one 

direction of movement. In case of loss or capture of the 

colony, the agent changes his subordination to the player. 

The reaction time determines how often an agent can be 

involved, analyze the situation and choose a direction. 

There are three main approaches to implementing actions 

that are implemented in the agents: 

1. Analysis and search of opponents, opponent's 

choice. Designing a relocation route to an 

opponent if it is achievable (developing a 

capture strategy). 

2. Analyze and search agents, select the agent who 

needs help. Designing a relocation route to an 

agent if it is achievable. 

3. Analysis of projected routes and solution 

correction. 

The analysis and search of the opponent take place 

using the basic ideas of the algorithm A *. Algorithm A * 

will first visit those vertices that are likely to lead to the 

shortest path. In order to recognize such executions, each 
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well-known top of x equals the value of f (x), which is 

equal to the length of the shortest path from the original 

vertex to the finite, which runs through the selected 

vertex. The vertices with the smallest value f are chosen 

first. 

The function f (x) for the vertex x is defined as: 

f (x) = g (x) + h (x),                  (1) 

where: g (x) is a function whose value is equal to the cost 

of the path from the original vertex to h(x), h (x) is a 

heuristic function that evaluates the cost of the path from 

the vertex x to the finite. 

In the process of the game design, the following 

algorithm was used: 

Step 1. After selecting the level of the game, the 

game field is initialized, the initial display and 

initialization of the agents. 

Step 2. After the command about the beginning of 

the game, the game controller is started. He is responsible 

for controlling gaming mechanics, deducting current and 

internal time, displaying the playing field and launching 

agents. 

Step 3. On each of the streams, the condition of each 

of the colonies and the group of bacteria and agents is 

checked. 

Step 4. If the colony has a simulated route to other 

colonies, a group of bacteria is formed and sent on a given 

road. 

Step 5. If a group of bacteria reaches the colony of 

the enemy, it causes damage to the colony. Otherwise, it 

strengthens its own colony. 

Step 6. If the agent is free, he analyzes the situation: 

he evaluates his opponents and neighbors and makes a 

decision on laying the road to improve the game situation 

(develops a strategy). 

Step 7. At the end of the stream, the balance is 

checked and the condition is checked at the end of the 

game. 

Step 8. Draw the location of the colonies, roads, and 

groups of bacteria on the game screen. 

Step 9. If the game is not completed, go to step 3. 

In practice, it is rather difficult to investigate multi-

agent systems, since it is virtually impossible to predict 

the actions of agents, as it is impossible to predict ways of 

communication between agents. For a more realistic study 

of systems, use simulation models that directly reflect the 

behavior of agents in the system. 

The simulation model is constructed in the form of a 

strategic game program that includes: bacteria that form 

colonies that are looking for the most optimal ways to 

capture all vertices (planets) and the game field. 

Each of the bots analyzes the situation on the field 

and synthesizes its solution, which would be beneficial to 

capture the next vertex, that is, what strategy should be 

built for further colonization of the playing field and how 

to strengthen its presence on already conquered peaks. 

Figure 7 shows the main menu of the simulation game 

Bacterial War [13, 16]. 

 

Fig.7 Main menu of the imitation game 

In addition, interactive collaboration between hostile 

colonies that can be combined to fight a stronger 

opponent or support an attack at a time of the joint attack 

is implemented in the work. 

Figure 8 shows an example of the functioning of 

agents in the game simulation system. This example 

shows a system with three colonies of different colors. 

Each of the colonies - this system is endowed with 

elements of artificial intelligence; whose purpose is to 

capture the entire field. Field capture occurs by sending 

their agents to the enemy colony to increase the influence 

of their bacteria in a given colony. 

 
Fig.8 Example of agent functionality 

CONCLUSION 

There is the consensus among game developers that 

intelligent characters for games can make games better. 

However, there is a difference in the approach to bring 

intelligence about between the game developers and the 

artificial intelligence researchers. Consequently, using 

agent technology in combination with game technology is 

not trivial. Because agents are more or less autonomous 

they should run in their own thread and can only be 

loosely coupled to the game engine.  

In this paper, there are arguments that improving the 
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AI in games by using agent technology to its full extent 

involves solving the issues above. Furthermore, solving 

the synchronization, information representation, and 

communication issues requires more than constructing a 

technical solution for the loose coupling of some 

asynchronous processes. Although this aspect is a 

fundamental part of the coupling, we also need to provide 

support on a conceptual and design level. Using a 

conceptual stance allows for connecting the agent 

concepts to the game concepts such that agent actions can 

be connected to actions that can be executed through the 

game engine and that agents can reason intelligently on 

the information available from the game engine. 

An imitation model based on the multi-agent 

decision-making approach has been developed. The 

communication of agents is realized on the basis of the 

homogeneous MAS principle. The system is developed on 

the basis of an imitation model that mimics the actions of 

bacteria in the environment. 
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