
ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL – 2018, Vol. 07, No. 4, 21 – 28

Designing multi-agent gameplay

V. Teslyuk, A. Lozunskyi, T. Teslyuk, P. Denysyuk

CAD Department, Lviv Polytechnic National University, UKRAINE, Lviv, S. Bandery Str, 12

e-mail: vasyl.teslyuk@lpnu.ua, lozunskuj.andrij@gmail.com,

taras.teslyuk@gmail.com, pavlo.denysyuk@gmail.com

Received December 01.2018: accepted December 18.2018

Abstract - There is an attention shift within the

gaming industry toward the more natural behavior of

nonplaying characters. The first part of this paper says

about the main concepts of agent and multi-agent systems.

The main part of this paper describes the main problem in

any multi-agent system, agent communication. Then we

write about main concepts of designing multi-agent

gameplay and describes own developed MAS game

simulator.

Keywords : MAS, agents, ACM, JADE, gamebot.

INTRODUCTION

Over the past ten years, the development of

telecommunication technologies has led to creating new

concepts of distributed and intelligent software systems.

Such systems are implemented in different ways, but

multi-agent systems (MAS) concentrate all the properties

which are necessary for technologies which are needed to

design and develop simulation systems and game systems

with proper artificial intelligence [1-3, 21-23]. The results

from the introduction of agent technologies confirm the

promise of this direction. Technology and the theory of

agents continue to evolve through research and

commercial projects. Particular attention is paid to the

integration of methods of artificial intelligence [3], which

until now have been used mainly in studies. Systems with

decentralized management are built on the basis of

autonomous, environmentally adaptable agents (active

elements) that achieve systemic goals through local

information exchange and coordination [1, 17-20, 24-26].

The more complex the games become and the more

elaborate the interactions between the characters during

the game, the more difficult it will become to design these

characters without the use of specialized tools geared

toward implementing intelligent agents in a modular way

[6, 14, 15]. The main issue of this paper is thus, given that

it makes sense to use ideas from agent research in gaming,

as seems to be supported by the growing amount of work

in games that incorporates agent concepts and

technologies, what would be necessary to make use of the

agent technology as developed for the multi-agent

platforms.

BASIC CONCEPTS AND PROPERTIES OF THE

AGENT

There is no clear definition of the term of the agent.

All available definitions are based on the scope of agents.

Such scopes are artificial intelligence, software

development, the field of study, computer science,

engineering, etc. [4]. Each agent is a process that has a

sufficient amount of knowledge about the object and the

ability to share this knowledge with other agents. In terms of

the object-oriented approach, an agent can be considered as

a set of functions in combination with an interface that is

capable of sending replies and receiving information. You

can also define the agent as a computer program that

executes asynchronously in accordance with the behavior

of a particular person or organization. Today, there are two

main types of agents: stationary and mobile [8]. An agent

can be perceived as a constituent system that responds to the

environment through the sensors and acts on it through the

effector [1]. According to this definition, the agent is any

entity (physical or virtual) that is experiencing its

environment and performs certain actions.

Physical are called agents that directly through the

controllers are in contact with the external environment

and parts of its own system [5].

Virtual agents are agents who, through software that

only receives data from the sensors, sends data to the

server and, when it received, gives the tasks to the

physical agent [6].

In most cases, the agents are the combination of

physical and virtual components. Using this information,

we can formulate a more proper definition: "Autonomous

agents are computing systems included in some complex

dynamic system that contact the environment through

sensors, the senders, sending data to the server through a

virtual component and following the instructions

received" [5]. Figure 1 depicts the scheme of the agent's

operation.

In addition to touch inputs, actions, and goals, the

agent may include domain knowledge (knowledge of a

specific environment or issues to be addressed). This

knowledge can be algorithmic, based on methods of

22 V. TESLYUK, A. LOZUNSKYI, T. TESLYUK, P. DENYSYUK

artificial intelligence, heuristics, etc. The notion of the

environment includes a physical system, operating system,

internet, or perhaps some of these systems are combined.

Fig.1 Scheme of the agent's operation

If the agent responds simultaneously to changes in

the environment and converts received sensory data into a

certain action, this agent is known as reactive (sometimes

called reflex agent). Usually, reactive agents [1, 3] do not

store the internal state, after receiving any data this agent

immediately affects the environment. On the other hand, if

the agent maintains the internal state and implies the

consequences of his actions, this agent is called the

trained agent [1]. Figure 2 depicts the functional scheme

of the reactive agent, and in Figure 3 depicts the

functional scheme of the agent having the property of

learning. The first step in developing a multi-agent system

is to select the properties of the agents.

Fig.2 Functional scheme of the reactive agent,

https://en.wikipedia.org/wiki/Multi-agent_system

Fig.3 Functional scheme of the trained agent,

https://en.wikipedia.org/wiki/Multi-agent_system

THE MAIN PROPERTIES AND CLASSIFICATION OF

MULTI-AGENT SYSTEMS

Multi-agent systems is a powerful tool for solving

tasks that are impossible or not profitable with the help of

one agent. Multi-agent systems have the following

properties [7]:

1. Autonomy - the ability when agents can resolve

their tasks without human intervention.

2. Social - the ability to live in the community of

agents and exchange data with other agents.

3. Reactivity - the ability to perceive the state of the

environment and respond in a timely manner to changes in

a given environment.

4. Internal activity - the ability to take the initiative,

that is, not only react to external events, but also generate

goals and act rationally for their achievement.

The fact that agents within the MAS work together

means that such cooperation is individual for each system.

However, the concept of cooperation in multi-agent

systems is the most complex part of all MAS and it is

more problematic than in the case of agents, which makes

data systems complex and individual.

There is an infinite number of simulators, games,

systems that are designed with the basic principles of

multi-agent systems. All systems have their advantages

and disadvantages, therefore it is customary to classify

them according to certain properties and tasks facing the

multi-agent system. Multi-agent systems are classified into

[9]:

1. Discretely independent multi-agent systems.

2. Independent MAS without cooperation.

3. Cooperative multi-agent systems.

Discretely independent multi-agent systems are found

in environments that enable the task to be solved without

the communication of agents. As an example of this type,

we can use two agents (controllers) that control the

synchronous generator in the power grid: the automatic

voltage regulator (AVR) and the speed controller. They

have different goals that are not related to each other [10].

Independent MAS without cooperation are

developed independently and each individual agent

pursues his or her own goals independently of others. It is

important to emphasize that in these multi-agent systems,

agents are not aware of the existence of other agents, and

each agent considers others as part of the environment.

Since agents exist in the same environment and perceive

each other as unknown environments, agents can

accomplish one goal without knowing about

collaboration, but they can also interfere with each other's

tasks. Collaboration between independent agents may

occur in two ways [11]: 1) Individual agents may receive

information about another agent as sensory data. 2)

Separate agents can receive as touch data information

about the task performed by an unknown agent and thus

DESIGNING MULTI-AGENT GAMEPLAY 23

perform another task. This type of multi-agent systems is

used in systems where agents perform the same tasks.

Cooperative MAS is the systems that know about

other agents in the system and this agent communicate

with others in various ways [8].

AGENT COMMUNICATION

In multi-agent systems that consist of many

autonomous agents, negotiations are a key form of

interaction that allows agent groups to reach a reciprocal

agreement, for example, with respect to some idea,

purpose, or plan. Communication between agents can be

achieved in a similar fashion as actions and perception of

the agent. Sending a message consequently requires

describing the pre- and postconditions. There are three

main topics for negotiating research [6]:

Protocols of negotiations - a set of rules that govern

the interaction. They determine the permissible types of

participants, negotiate, events causing transitions to other

states and acceptable actions of participants in certain

states.

Negotiations are the range of issues that should be

agreed upon. These can be, as simple problems, as

complex problems [11]. Permissive operations on these

subjects are also relevant. In the simplest case, the

structure and content of the agreement are established and

the negotiations seek to accept or reject the proposal. A

more complex case involves flexibility in order to change

the significance of the problem in the negotiation, through

counteroffers, changing the structure of the subject of

negotiations.

Models of consideration of agents - provides a

decision-making machine through which the participants

try to achieve their goal. The complexity of the model is

determined according to the protocol used, the nature of

the subject of negotiations and the range of operations that

can be performed on it.

Negotiations in the MAS may contain complex

considerations of a high level. In order to create a

practical use, a low-level basic infrastructure is very

important. For example, any formally-based negotiation

protocol should deal with a loss of communications or the

elimination of one of the negotiating partners.

Indeed, low-level communication languages control

classes of conversations in which pair of agents can

participate. The components of conversations are

determined not only by the indicated action but also

according to the preconditions, postures, and conditions of

the completion of this speech act [5]. They determine the

circumstances under which communication may occur and

include the status of the submission of the agents

concerned.

In order for the negotiations to be completed

successfully, all involved parties should clearly

understand the rules of the protocol negotiations or

commitments. Indeed, low-level communication

languages control classes of conversations in which pair

of agents can participate. The components of

conversations are determined not only by the indicated

action but also according to preconditions, post-words,

and conditions of the completion of this speech act. They

determine the circumstances under which communication

may occur and include the status of the submission of the

agents concerned.

Receiving a message is controlled by an agent

subscribing to messages and by the game engine when it

determines that an agent can sense an action. In this case,

we do not only specify the agreement between agent and

game engine but also between agents. So there are three or

more parties that need to conform to the agreement

instead of two in the previous case. We will call this

agreement the agent communication model (ACM) [4].

The definition of the ACM will contain the type of

things that can be communicated (communication content

representation) between agents. This representation is

only relevant to the agents in the game. The ACM also

specifies when communication can take place

(qualification representation). This specifies the impact of

the environment on communication. For instance, if an

agent is far away, it may not be able to communicate.

These factors are relevant to the game engine that is

responsible for simulating the environment.

There already exists a formalism that provides a

communication content representation. It provides a way

to communicate such things as beliefs among agents or

propose an action or communicate with multiple agents.

Within the FIPA standard [11], these communicative acts

are already defined. We propose to use the FIPA standard

to establish a game-specific message structure. For

example, in our firefighting game, agent A may propose to

agent B that A opens the door to the building:

(propose
: sender
 (agent-identifier:name A)
:receiver
 (set (agent-identifier:name B))
:content
 “((action A (open door))”
: ontology Fire-fighting
:In-reply-to proposal2
: language Fipa-so)

The message is translated to the concepts internal to

both the agent and the game engine. The game engine

will, upon reception of the above message, send this

message to agent B and automatically subscribe agent A

to the communication messages of agent B. This is

because agent A and B can now be said to be in a

dialogue and it is likely that agent A would like to receive

an answer. The game could progress such that agent B

replies affirmatively and the game engine receives an

action from agent A to open the door and an action from

agent B to go through the door. The game engine will now

have enough information to know that this is a

24 V. TESLYUK, A. LOZUNSKYI, T. TESLYUK, P. DENYSYUK

coordinated action and that the order of actions (as

implied by the dialogue) is to process the door opening

action first and the movement action second. The game

engine, therefore, takes these messages from the incoming

actions queue and processes these together (coordinated)

and in the right order [12].

To describe the impact of the environment on

communication, we have to augment the linguistic

representation with information about the environment.

Since communication is a form of action, the same

qualification representation needs to be made explicit.

These qualification rules will also need to specify the

ramifications of communication. This allows us, on the

one hand, to specify what is needed when agents want to

communicate (e.g., that they are close together) and on the

other hand the (side) effects of communication (e.g., if

other agents than the message recipient are nearby they

too may receive the message):

Get: Poss(Send(Propose(Action,Agent)))
 Dist(Agent)<5
POST: Done(Send(Propose(Action,Agent)))
 Dist(Agent')<5
 Poss(Receive(Propose(Action,Agent)))

DESIGNING GAME SIMULATION

The designing game simulation consists of two main

part: Client-side, Server-side.

Client-side(gamebots) has been created as a research

platform for making the connection between agent

research and a computer game, namely, the Unreal

Tournament environment, and is one of the most used

client-side implementations. In client-side approaches,

agents are running as completely separate programs from

the server and are usually communicating through network

sockets. Network communication between agents and

other external software programs has been successfully

used in other multi-agent systems. Gamebots was

designed for educational purposes, and therefore, multiple

client implementations have been created, for example,

one using the scripting language TCL, a SOAR bot, and a

JAVA-based implementation [7].

Figure 4 shows a diagram of the different Gamebot

modules in combination with the JAVAbot extension. The

Gamebot API forms the extension to Unreal Tournament

that is needed to connect a client-side program to the

Unreal Tournament. The JAVAbot API is the client side

of the coupling. Having a general JAVA API on this side

facilitates the connection to most agent platforms because

they are usually also JAVA based. Information is sent

from the game engine to the agents through the Gamebot

and JAVAbot APIs by two types of messages:

synchronous and asynchronous messages [6]. The

synchronous messages are sent at a configurable interval.

They provide information about the perceptions of the bot

in the game world and a status report of the bot itself.

Asynchronous messages are used for events in the game

that occur less often and are directly sent to the agent.

Fig.4 Client-side bots architecture in game design [7]

The Gamebots is actually not a pure client-side

solution because the server is also modified to supply a

special world representation to the bot. There are some

pure client agent implementations, but they are usually

only created for cheating purposes. In this case, the

processing of the data is done in the bot itself because it

pretends to be a human client game. Doing this filtering

on the server is more efficient because only the useful

information needs to be communicated. This server

modification, the Gamebots network API, performs a

similar task and for similar reasons as the area awareness

system in game simulation. This clarifies why the

Gamebot API is specific for Unreal Tournament; it needs

to know the internal representation of the game world in

order to make the translation (efficiently) [12].

The Gamebot API does not provide information

about the complete environment, but only about objects

that are perceivable by the bot. Thus, if a bot wants to

gather information about the complete environment, it has

to (physically) explore it. To navigate, for example, the

agent receives information about predefined navigation

nodes in the game map, but only the currently observable

nodes are returned. The agent thus does not know what

exists around the corner, let alone that it can reason about

it. Due to the representation choices made in Gamebots,

information about the environment has to be stored at the

agent side of the system [11]. This results in large

differences between the agent’s representation of the

environment and the actual environment of the game

engine. For complex bots, the information provided by the

Gamebot API quickly becomes too limited to make

intelligent decisions. For example, the agent cannot know

the spawning location of a certain power-up, and

therefore, it cannot plan to go there.

The Gamebot API does not provide information

about the complete environment, but only about objects

that are perceivable by the bot. Thus, if a bot wants to

gather information about the complete environment, it has

to (physically) explore it. To navigate, for example, the

agent receives information about predefined navigation

nodes in the game map, but only the currently observable

nodes are returned. The agent thus does not know what

exists around the corner, let alone that it can reason about

it. Due to the representation choices made in Gamebots,

information about the environment has to be stored at the

agent side of the system. This results in large differences

between the agent’s representation of the environment and

the actual environment of the game engine. For complex

bots, the information provided by the Gamebot API

quickly becomes too limited to make intelligent decisions.

DESIGNING MULTI-AGENT GAMEPLAY 25

For example, the agent cannot know the spawning

location of a certain power-up, and therefore, it cannot

plan to go there [9].

In the most games, the agents are completely

integrated in the default game loop in the same way as the

physics engine, the animation engine, and rendering

engine. The agent’s decisions are defined by a sequence

of method calls, and the methods return the action that has

to be performed at that time step. Direct method calls can

be used for many different decision-making processes, for

example, hard-coding approaches, directly specifying

what to return with a certain input; fuzzy logic, mapping

the right output to a certain set of input variables; or finite

state machines, identifying the situation the agent is in and

executing the corresponding method call. Independent of

the particular decision-making strategy, the whole process

is completely synchronized [1]. This limits the complexity

of behavior because in a synchronized process all

decisions have to be made within one-time step, and

complex decisions would slow down a game too much.

Figure 5 gives an impression of the implementation

of agents in games simulation. On the lowest level in the

figure, a translation from the raw engine data to a

representation more suitable for agents has been created,

called the area awareness system (AAS). The heart of the

AAS is a special 3D representation of the game world that

provides all the information relevant to the bot. The AAS

informs the bot about the current state of the world,

including information relevant to navigation, routing, and

other entities in the game. The information is formatted

and preprocessed for fast and easy access and usage by

the bot. For instance, to navigate the bot receives

information from the AAS about the locations of all static

items, and it can ask the AAS whether a certain location is

reachable [7]. The AAS is responsible for route planning.

The first level also executes the actual actions of the agent

and facilitates the decision process of the agents.

However, the agents are highly dependent on the data they

can extract from the AAS, for example, an agent cannot

decide to take another route to a certain item. To illustrate

the importance of the linkage between the engine and the

agents, this part constitutes over 50% of the entire agent

code.

Fig.5 Bot`s server-side architecture in the game design

On the second and third levels of the architecture, the

information from the AAS can be used to check whether

the bot’s goals are reached or how far off they are.

Depending on the character that a bot plays, the fuzzy

logic control determines which of the possible paths the

bot should start navigating.

Little communication between agents takes place in a

normal game. It is only used to assign roles in team play

situations [5]. Communication is implemented by using

the chat system for sending simple text messages. More

cooperation between agents would require improved

communication facilities. Moreover, currently, it is

assumed that communication is always successful, which

is usually not guaranteed in realistic mult-iagent scenarios.

IMPLEMENTATION GAME SIMULATION

Based on the main concepts of game designing, there

was developed game simulation of “Bacterial War”.

Several variants of agents, each of which has their

reaction time and internal algorithm for analysis of the

situation, are implemented in the work. Figure 6 is

depicted as a general scheme of agents functions.

Fig.6 Scheme of agent’s functionality

The agent is responsible for choosing the direction of

movement of groups of bacteria from a given colony. At

one time, the colony can choose no more than one

direction of movement. In case of loss or capture of the

colony, the agent changes his subordination to the player.

The reaction time determines how often an agent can be

involved, analyze the situation and choose a direction.

There are three main approaches to implementing actions

that are implemented in the agents:

1. Analysis and search of opponents, opponent's

choice. Designing a relocation route to an

opponent if it is achievable (developing a

capture strategy).

2. Analyze and search agents, select the agent who

needs help. Designing a relocation route to an

agent if it is achievable.

3. Analysis of projected routes and solution

correction.

The analysis and search of the opponent take place

using the basic ideas of the algorithm A *. Algorithm A *

will first visit those vertices that are likely to lead to the

shortest path. In order to recognize such executions, each

26 V. TESLYUK, A. LOZUNSKYI, T. TESLYUK, P. DENYSYUK

well-known top of x equals the value of f (x), which is

equal to the length of the shortest path from the original

vertex to the finite, which runs through the selected

vertex. The vertices with the smallest value f are chosen

first.

The function f (x) for the vertex x is defined as:

f (x) = g (x) + h (x), (1)

where: g (x) is a function whose value is equal to the cost

of the path from the original vertex to h(x), h (x) is a

heuristic function that evaluates the cost of the path from

the vertex x to the finite.

In the process of the game design, the following

algorithm was used:

Step 1. After selecting the level of the game, the

game field is initialized, the initial display and

initialization of the agents.

Step 2. After the command about the beginning of

the game, the game controller is started. He is responsible

for controlling gaming mechanics, deducting current and

internal time, displaying the playing field and launching

agents.

Step 3. On each of the streams, the condition of each

of the colonies and the group of bacteria and agents is

checked.

Step 4. If the colony has a simulated route to other

colonies, a group of bacteria is formed and sent on a given

road.

Step 5. If a group of bacteria reaches the colony of

the enemy, it causes damage to the colony. Otherwise, it

strengthens its own colony.

Step 6. If the agent is free, he analyzes the situation:

he evaluates his opponents and neighbors and makes a

decision on laying the road to improve the game situation

(develops a strategy).

Step 7. At the end of the stream, the balance is

checked and the condition is checked at the end of the

game.

Step 8. Draw the location of the colonies, roads, and

groups of bacteria on the game screen.

Step 9. If the game is not completed, go to step 3.

In practice, it is rather difficult to investigate multi-

agent systems, since it is virtually impossible to predict

the actions of agents, as it is impossible to predict ways of

communication between agents. For a more realistic study

of systems, use simulation models that directly reflect the

behavior of agents in the system.

The simulation model is constructed in the form of a

strategic game program that includes: bacteria that form

colonies that are looking for the most optimal ways to

capture all vertices (planets) and the game field.

Each of the bots analyzes the situation on the field

and synthesizes its solution, which would be beneficial to

capture the next vertex, that is, what strategy should be

built for further colonization of the playing field and how

to strengthen its presence on already conquered peaks.

Figure 7 shows the main menu of the simulation game

Bacterial War [13, 16].

Fig.7 Main menu of the imitation game

In addition, interactive collaboration between hostile

colonies that can be combined to fight a stronger

opponent or support an attack at a time of the joint attack

is implemented in the work.

Figure 8 shows an example of the functioning of

agents in the game simulation system. This example

shows a system with three colonies of different colors.

Each of the colonies - this system is endowed with

elements of artificial intelligence; whose purpose is to

capture the entire field. Field capture occurs by sending

their agents to the enemy colony to increase the influence

of their bacteria in a given colony.

Fig.8 Example of agent functionality

CONCLUSION

There is the consensus among game developers that

intelligent characters for games can make games better.

However, there is a difference in the approach to bring

intelligence about between the game developers and the

artificial intelligence researchers. Consequently, using

agent technology in combination with game technology is

not trivial. Because agents are more or less autonomous

they should run in their own thread and can only be

loosely coupled to the game engine.

In this paper, there are arguments that improving the

DESIGNING MULTI-AGENT GAMEPLAY 27

AI in games by using agent technology to its full extent

involves solving the issues above. Furthermore, solving

the synchronization, information representation, and

communication issues requires more than constructing a

technical solution for the loose coupling of some

asynchronous processes. Although this aspect is a

fundamental part of the coupling, we also need to provide

support on a conceptual and design level. Using a

conceptual stance allows for connecting the agent

concepts to the game concepts such that agent actions can

be connected to actions that can be executed through the

game engine and that agents can reason intelligently on

the information available from the game engine.

An imitation model based on the multi-agent

decision-making approach has been developed. The

communication of agents is realized on the basis of the

homogeneous MAS principle. The system is developed on

the basis of an imitation model that mimics the actions of

bacteria in the environment.

REFERENCES

1. Ayesh A., Stokes J., and Edwards R., 2007. “Fuzzy

Individual Model (FIM) for realistic crowd simulation:

preliminary results,” in Proceedings of IEEE

International Conference on Fuzzy Systems (FUZZ

'07), pp. 1–5, London, UK.

2. Boyko N., Kutyuk O. 2016. Basic concepts of

evolution in agents calculating and agents system.

ECONTECHMOD. An International Quarterly

Journal, Vol. 05, No. 2. 69-76.

3. Wooldridge M., 2009. An Introduction To Multiagent

Systems. 468.

4. Orkin J., 2003. “Applying goal-oriented action

planning to games,” in AI Game Programming

Wisdom 2, Charles River Media, Brookline, Mass,

USA.

5. Pollack M. E. and Horty J. F., 1999. “There's more

to life than making plans: plan management in

dynamic, multiagent environments, “AI Magazine, vol.

20, no. 4, pp. 71–83.

6. Lees M., Logan B., and Theodoropoulos G. K.,

2006. “Agents, games and HLA, “Simulation

Modelling Practice and Theory, vol. 14, no. 6, pp.

752–767.

7. Antunes L. and Takadama K., Eds., 2007. Multi-

Agent-Based Simulation VII, vol. 4442 of Lecture

Notes in Computer Science, Springer, Berlin,

Germany.

8. Silverman B. G., Bharathy G., Johns M.,

Eidelson R. J., Smith T. E., and Nye B., 2007.

“Sociocultural games for training and analysis,” IEEE

Transactions on Systems, Man and Cybernetics, Part

A, vol. 37, no. 6, pp. 1113–1130.

9. Dastani M., 2008. “2APL: a practical agent

programming language,” Autonomous Agents and

Multi-Agent Systems, vol. 16, no. 3, pp. 214–248.

10. Bordini R., Hübner J., and Wooldridge M., 2007.

Programming Multi-Agent Systems in AgentSpeak

Using Jason, John Wiley & Sons, New York, NY,

USA.

11. Kraus S., 1997. “Negotiation and cooperation in

multi-agent environments,” Artificial Intelligence, vol.

94, no. 1-2, pp. 79–97.

12. Johnson W. L., 1994. “Agents that learn to explain

themselves,” in Proceedings of the 12th National

Conference on Artificial Intelligence, vol. 2, pp.

1257–1263, Seattle, Wash, USA.

13. Teslyuk T., Denysyuk P., Kernytskyy A., Teslyuk

V., 2015. “Automated Control System for Arduino and

Android Based Intelligent Greenhouse” in Proceeding

of the ХIth International Conference "Perspective

Technologies and Methods in MEMS Design",

MEMSTECH’2015, Polyana, Lviv, Ukraine. 2015. –

P. 7 – 10.

14. Chernyshev Y., Chumachenko D., Tovstik A.,

2013. Development of intelligent agents for simulation

of hepatitis B epidemic process. Proceedings of East

West Fuzzy Colloquium (20th Zittau Fuzzy

Colloquium, September 25 – 27, 2013). 161 – 168.

15. Chumachenko D., Yakovlev S. 2016. Investigation

of agent-based simulation of malicious software.

ECONTECHMOD. An International Quarterly

Journal, Vol. 05, No. 4. 61-67.

16. Teslyuk, V. M., Lozynskyi, A. Yа., & Teslyuk, T. V.

2017. Application of Multi-Agent Approach in the

Process of Implementation of the Game Program

"Bacterial War". Scientific Bulletin of UNFU, 27(6),

178–181. (In Ukrainian)

17. Nwana H., 1996. «Software agents: An overview». –

The Knowledge Engineering Review Journal – vol.

11, № 3 – pp. 1– 40.

18. Carole B., Marie-Pierre G., Sylvain P., Gauthier P.

2003. ADELFE: A Methodology for Adaptive Multi-

agent Systems Engineering – Engineering Societies in

the Agents World III, Lecture Notes in Computer

Science – Volume 2577 – pp. 156 – 169.

19. Lytvyn V., Dosyn D., Medykovskyj M.,

Shakhovska N. 2011. Intelligent agent on the basis of

adaptive ontologies construction – Signal Modelling

Control – Lodz.

20. Kubera Y. 2010. Everythіng can be Agent (Extended

Abstract) – Proc. of 9th Іnt. Conf. on Autonomous

Agents and Multіagent Systems (AAMAS 2010). –

Toronto – Volume 1 – pp. 1547–1548.

21. Boreiko O. Y., Teslyuk V. M., Zelinskyy A.,

Berezsky О., 2017. Development of models and

means of the server part of the system for passenger

traffic registration of public transport in the "smart"

city. Eastern-European Journal of Enterprise

Technologies. – Vol. 1, Issue 2 (85). – P. 40–47.

22. Teslyuk V., Beregovskyi V., Denysyuk P., Teslyuk

Т., Lozynskyi A., 2018. Development and

Implementation of the Technical Accident Prevention

Subsystem for the Smart Home System, International

https://scholar.google.com.ua/scholar?oi=bibs&cluster=10947609715930644536&btnI=1&hl=uk
https://scholar.google.com.ua/scholar?oi=bibs&cluster=10947609715930644536&btnI=1&hl=uk

28 V. TESLYUK, A. LOZUNSKYI, T. TESLYUK, P. DENYSYUK

Journal of Intelligent Systems and

Applications(IJISA), Vol.10, No.1, pp.1-8.

23. Lytvyn V. 2013. Design of intelligent decision

support systems using ontological approach.

ECONTECHMOD 2, (1), 31–37.

24. Kravets P., 2018. Game Method for Coalitions

Formation in Multi-Agent Systems, 2018 IEEE 13th

International Scientific and Technical Conference on

Computer Sciences and Information Technologies

(CSIT), Lviv, pp. 1-4.

25. Burov Ye., Pasichnyk V., Katrenko A. 2018.

Building an ontology for system analysis.

ECONTECHMOD 7, (3), 3–6.

26. Lytvyn V., Oborska J., Vovnjanka R. 2015.

Approach to decision support Intelligent Systems

development based on Ontologies. ECONTECHMOD

4, (4), 29–35.

