PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A thermal stress forming method for increasing bending angle and improving microstructure and properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal stress forming (thermoforming) technology has good advantages in small-batch, complex surface, brittle, and hard material processing. A large bending angle is the main objective of thermal stress forming. However, the problem of small bending angle has always existed. Especially in the case of larger workpiece thickness (h ≥ 1 mm), the bending angle is smaller. To solve the aforementioned problems, a new method (end blocking method, EBM) is proposed. The bending angle and deformation mechanism of this method with different plate thickness and processing parameters are investigated. Finally, the microstructure and properties of the heating zone are observed. The results show that the new method (9.05 deg) can increase the bending angle by 37.71 times with the traditional method (0.24 deg). The reason is that the new method can form a large bending moment in the heating zone and increase the bending angle effectively. Moreover, the method can still achieve a large bending angle (the traditional method: 0.02 deg, the new method: 2.75 deg, increased by 137.5 times), when the plate is thick (h = 1.2 mm). The bending angle obtained by the new method increases with the increment in laser power or the decrement in scanning speed. By contrast, the change in laser diameter has minimal effect on bending angle. In addition, because the new method can produce large compressive stress in the heating zone, the compressive stress can effectively refine the grains and increase the microhardness by 1.22 times. Therefore, this method can effectively improve the microstructure and properties of the heating zone. This method only needs a simple baffle, and the whole process is simple and practical. The new method in this study uses the laser as the heat source and is also suitable for flame thermoforming and high-frequency induction thermoforming.
Rocznik
Strony
art. no. e23, 2022
Opis fizyczny
Bibliogr. 31 poz., fot., rys., wykr.
Twórcy
autor
  • College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
autor
  • College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
  • College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
autor
  • College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
autor
  • College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
Bibliografia
  • 1. Li JH, Su ZC, Yao FP. Application of BP neural network in laser bending forming of aluminum alloy plate. Hot Work Technol. 2017;46:158–65.
  • 2. Fu SC, Yang LJ, Zhang HZ. Analyses of effects of process parameters on laser bending of stiffened panels. Int J Precis Eng Man. 2018;19:593–604.
  • 3. Dutta PP, Kalita K, Dixit US. Electromagnetic-force-assisted bending and straightening of AH36 steel strip by laser irradiation. Laser Man Mater Process. 2018;5:201.
  • 4. Magee J, Sidhu J, Cooke RL. A prototype laser forming system. Opt Laser Eng. 2000;34(4–6):339–53.
  • 5. Yang LJ, Chen YL, Wei YJ. Experimental study on laser induced hot forming of 5A06 aluminum alloy plate. Sci Technol Eng. 2016;2016:33.
  • 6. Guan YJ, Sun S. Experimental study on the effect of scanning times on laser bending of sheet metal. Photoelectron Laser. 2002;11:1163–6.
  • 7. Wang Y, Lu H, Tan JG. Study on laser heating bending of sheet metal. Laser Tech. 2003;03:16–8.
  • 8. Cai YG, Wang XF, Chen GG. Laser bending test of sheet metal. J Beijing Univ Aeronaut Astronaut. 2009;02:154–7.
  • 9. Shi JW. Numerical simulation of bending characteristics of thin plates under different laser heating modes. Harbin: Harbin Institute of technology; 2007.
  • 10. Kalvettukaran P, Das S, Marimuthu S, Misra D. Increment in laser bending angle by forced bottom cooling. Int J Adv Manuf Tech. 2018;94(5–8):2137–47.
  • 11. Ding L. Research on laser bending technology of aluminum lithium alloy sheet. Jiangsu: University; 2010.
  • 12. Otsu M, Ito Y, Ishii A. Effect of heat treatment and transformation on bending angle in laser forming of titanium foils. Key Eng Mater. 2007;344:243–50.
  • 13. Hu Z, Labudovic M, Wang H. Computer simulation and experimental investigation of sheet metal bending using laser beam scanning. Int J Mach Tool Manu. 2001;41(4):589–607.
  • 14. Guan YJ, Zhang HM, Zhang SY. Effect of laser bending on microstructure and properties of sheet metal. Automot Technol Mater. 2002;1:5–7.
  • 15. Liu SH, Hu QW, Zhou LZ. Microstructure and properties of ti-7al-2zr-2mo-2v by laser bending. China. Laser. 2002; 29 (11):1049-1053.
  • 16. Ma GY, Wu DJ, Niu FY. Effect of dislocation on laser bending process of thin silicon wafer. China Laser. 2008;35(5):772.
  • 17. Wu DJ, Niu FY, Zhang Q. Microstructure change analysis of CO2 laser bending glass sheet. China Laser. 2009;36(05):1229–32.
  • 18. Zhang Q. Experimental study on laser bending of alumina ceramic sheet. Dalian: Dalian University of technology; 2009.
  • 19. Carey C, Cantwell WJ, Dearden G. Towards a rapid, non-contact shaping method for fibre metal laminates using a laser source. Int J Mach Tool Manu. 2010;47(5–8):557–65.
  • 20. Zhang P, Wang XY. Element diffusion and material properties of transition layer in laser bending zone of laminated plates. China Laser. 2016;2016:76–82.
  • 21. Shi YJ, Hu J, Dong C. Analysis of the geometric effect on the forming accuracy in laser forming. P I Mech Eng B-J Eng. 2011;225(10):1792–800.
  • 22. Guan YJ, Sun S. Study on buckling mechanism of sheet metal in laser bending. Opt Laser Technol. 2001;01:11–4.
  • 23. Guo YK, Shi YJ, Wang XG, Sun R. An analytical model of laser bending angle under preload. Int J Adv Manuf Tech. 2020;2020:1–9.
  • 24. Liu HW. Advanced material mechanics. Beijing: Higher education press; 1985.
  • 25. Zhang SS. Mechanics of materials. Beijing: China Machine Press; 2009.
  • 26. Wang H, Wang K, Wang W. Microstructure and mechanical properties of low-carbon Q235 steel welded using friction stir welding. Acta Metall Sin-Engl. 2020;33:1556.
  • 27. Sun YL, Ma HH, Yang M. Research on interface characteristics and mechanical properties of 6061 Al alloy and Q235a steel by hot melt-explosive compression bonding. Coatings. 2020;10(11):1031.
  • 28. Muhammad S, Lothar W. Influence of extrusion parameters on microstructure and texture developments, and their effects on mechanical properties of the magnesium alloy AZ80. Mat Sci Eng A Struct. 2009;506:141.
  • 29. Song JL, Li DZ, Bai SB. Microstructure and deformation mechanism of TWIP Steel under static tension at room temperature. J Iron Steel Res. 2015;2015:61–6.
  • 30. Meng M, Zhao X, Zhang Z. Effects of compression-pass on microstructure and mechanical properties of AZ80 Alloy. J Mater Eng Perform. 2014;23(9):3407–11.
  • 31. Zhang SH, Luo CX, Liu JA. Effect of extrusion process on grain size of alloy bars. J Cent South Univ Technol. 2001;32(2):77–81.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6e2f742-801e-44bc-8091-2293b3a07c00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.