PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the hyper-order of transcendental meromorphic solutions of certain higher order linear differential equations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we investigate the growth of meromorphic solutions of the linear differential equation [formula] where k ≥ 2 is an integer, Pj(z) (j = 0,1,... , k — 1) are nonconstant polynomials and hj(z) are meromorphic functions. Under some conditions, we determine the hyper-order of these solutions. We also consider nonhomogeneous linear differential equations.
Rocznik
Strony
853--874
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • University of Mostaganem (UMAB) Department of Mathematics Laboratory of Pure and Applied Mathematics B.P. 227 Mostaganem, Algeria
autor
  • University of Mostaganem (UMAB) Department of Mathematics Laboratory of Pure and Applied Mathematics B.P. 227 Mostaganem, Algeria
Bibliografia
  • [1] M. Andasmas, B. Belai'di, On the order and hyper-order of meromorphic solutions of higher order linear differential equations, Hokkaido Math. J. 42 (2013) 3, 357-383.
  • [2] B. Belai'di, On the meromorphic solutions of linear differential equations, J. Syst. Sci. Complex. 20 (2007) 1, 41-46.
  • [3] B. Belai'di, Growth and oscillation theory of solutions of some linear differential equations, Mat. Vesnik 60 (2008) 4, 233-246.
  • [4] B. Belai'di, S. Abbas, On the hyper-order of solutions of a class of higher order linear differential equations, An. f-ftiinj. Univ. "Ovidius" Constanta Ser. Mat. 16 (2008) 2, 15-30.
  • [5] T.B. Cao, H.X. Yi, On the complex oscillations of higher order linear differential equations with meromorphic coefficients, J. Syst. Sci. Complex. 20 (2007) 1, 135-148.
  • [6] Z.X. Chen, The zero, pole and orders of meromorphic solutions of differential equations with meromorphic coefficients, Kodai Math. J. 19 (1996) 3, 341-354.
  • [7] Z.X. Chen, On the hyper-order of solutions of some second order linear differential equations, Acta Math. Sin. (Engl. Ser.) 18 (2002) 1, 79-88.
  • [8] W.J. Chen, J.F. Xu, Growth of meromorphic solutions of higher order linear differential equations, Electron. J. Qual. Theory Differ. Equ. 2009, No. 1, 1-13.
  • [9] Z.X. Chen, C.C. Yang, Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math. J. 22 (1999) 2, 273-285.
  • [10] Y.M. Chiang, W.K. Hayman, Estimates on the growth of meromorphic solutions of linear differential equations, Comment. Math. Helv. 79 (2004) 3, 451-470.
  • [11] G.G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988) 1, 88-104.
  • [12] G.G. Gundersen, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988) 1, 415-429.
  • [13] H. Habib, B. Belai'di, Hyper-order and fixed points of meromorphic solutions of higher-order linear differential equations, Arab J. Math. Sci. 22 (2016) 1, 96-114.
  • [14] K. Hamani, B. Belai'di, On the hyper-order of solutions of a class of higher order linear-differential equations, Bull. Belg. Math. Soc. Simon Stevin 20 (2013) 1, 27-39.
  • [15] W.K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press, Oxford 1964.
  • [16] K.H. Kwon, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J. 19 (1996) 3, 378-387.
  • [17] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, vol. 15, Walter de Gruyter & Co., Berlin-New York, 1993.
  • [18] J. Tu, C.F. Yi, On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order, J. Math. Appl. 340 (2008) 1, 487-497.
  • [19] J. Tu, H.Y. Xu, H.M. Liu, Y. Liu, Complex oscillation of higher order Linear differential equations with coefficients being lacunary series of finite iterated order, Abstr. Appl. Anal. (2013), Art. ID 634739, 1-8.
  • [20] L.P. Xiao, Z.X. Chen, On the growth of solutions of a class of higher order linear-differential equations, Southeast Asian Bull. Math. 33 (2009) 4, 789-798.
  • [21] C.C. Yang, H.X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers Group, Dordrecht, 2003.
  • [22] X. Zhang, D. Sun, Existence of meromorphic solutions of some higher order linear differential equations, Acta Math. Sci. Ser. B Engl. Ed. 33 (2013) 2, 600-608.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6e25423-6c33-4946-87f4-13c0d3b0b0f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.