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Abstract. In this paper, we investigate the growth of meromorphic solutions of the linear
differential equation

f (k) + hk−1(z)ePk−1(z)f (k−1) + . . . + h0(z)eP0(z)f = 0,

where k ≥ 2 is an integer, Pj(z) (j = 0, 1, . . . , k − 1) are nonconstant polynomials and hj(z)
are meromorphic functions. Under some conditions, we determine the hyper-order of these
solutions. We also consider nonhomogeneous linear differential equations.
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1. INTRODUCTION AND RESULTS

In this paper, we assume that the reader is familiar with the fundamental results and
the standard notations of the Nevanlinna value distribution theory of meromorphic
functions (see [15,21]). Let σ(f) denote the order of growth of a meromorphic function f .
We recall the following definitions.

Definition 1.1 ([9, 16]). Let f be a meromorphic function. Then the hyper-order
σ2(f) of f is defined by

σ2(f) = lim sup
r→+∞

log log T (r, f)
log r ,

where T (r, f) is the Nevanlinna characteristic of f (see [15,21]).
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Definition 1.2 ([9]). Let f be a meromorphic function. Then the hyper-exponent of
convergence of zeros sequence of f is defined by

λ2(f) = lim sup
r→+∞

log logN
(
r, 1
f

)

log r ,

where N(r, 1
f ) is the integrated counting function of zeros of f in {z : |z| ≤ r}. Similarly,

the hyper-exponent of convergence of the sequence of distinct zeros of f is defined by

λ2(f) = lim sup
r→+∞

log logN
(
r, 1
f

)

log r ,

where N
(
r, 1
f

)
is the integrated counting function of distinct zeros of f in {z : |z| ≤ r}.

We define the logarithmic measure of a set E ⊂ (1,+∞) by lm(E) =
∫ +∞

1
χE(t)
t dt,

where χE is the characteristic function of E.
For the second order linear differential equation

f ′′ + h1(z)eP (z)f ′ + h0(z)eQ(z)f = 0, (1.1)

where P (z) and Q(z) are nonconstant polynomials, h1(z) and h0(z) 6≡ 0 are entire
functions satisfying σ(h1) < degP and σ(h0) < degQ, Gundersen showed in ([12,
p. 419]) that if degP 6= degQ, then every nonconstant solution of equation (1.1) is of
infinite order. If degP = degQ, then equation (1.1) may have nonconstant solutions
of finite order. Indeed, f(z) = ez +2 satisfies f ′′+ 1

2e
zf ′− 1

2e
zf = 0. Kwon [16] studied

the case where degP = degQ and proved the following result.

Theorem 1.3 ([16]). Let P (z) = anz
n+ . . .+a1z+a0 and Q(z) = bnz

n+ . . .+b1z+b0
be nonconstant polynomials, where ai, bi (i = 0, 1, . . . , n) are complex numbers such
that anbn 6= 0. Let hj(z) (j = 0, 1) be entire functions with σ(hj) < n. Suppose that
arg an 6= arg bn or an = cbn (0 < c < 1). Then every nonconstant solution f of
equation (1.1) is of infinite order and satisfies σ2(f) ≥ n.

In [7], Chen improved the result of Theorem 1.3 for the linear differential equation
(1.1) as follows.

Theorem 1.4 ([7]). Let P (z) = anz
n+ . . .+a1z+a0 and Q(z) = bnz

n+ . . .+b1z+b0
be nonconstant polynomials, where ai, bi (i = 0, 1, . . . , n) are complex numbers such
that anbn 6= 0. Let h1(z), h0(z) (6≡ 0) be entire functions with σ(hj) < n. Suppose that
arg an 6= arg bn or an = cbn (0 < c < 1). Then every solution f( 6≡ 0) of (1.1) satisfies
σ2(f) = n.

In [2], Belaïdi extended Theorem 1.3 for higher order linear differential equations
with meromorphic coefficients as follows.
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Theorem 1.5 ([2]). Let k ≥ 2 be an integer and Pj(z)=
∑n
i=0 ai,jz

i (j=0, 1, . . . , k−1)
be nonconstant polynomials, where a0,j , . . . , an,j (j = 0, . . . , k−1) are complex numbers
such that an,jan,0 6= 0 (j = 1, . . . , k − 1). Let hj(z) ( 6≡ 0) (j = 0, 1, . . . , k − 1) be
meromorphic functions. Suppose that arg an,j 6= arg an,0 or an,j = cjan,0 (0 < cj < 1)
(j = 1, . . . , k−1) and σ(hj) < n (j = 0, 1, . . . , k−1). Then every meromorphic solution
f ( 6≡ 0) of the differential equation

f (k) + hk−1(z)ePk−1(z)f (k−1) + . . .+ h1(z)eP1(z)f + h0(z)eP0(z)f = 0 (1.2)

is of infinite order.

In 2008, Tu and Yi obtained the following result.

Theorem 1.6 ([18]). Let k ≥ 2 be an integer and Pj(z)=
∑n
i=0 ai,jz

i (j=0, 1, . . . , k−1)
be polynomials with degree n ≥ 1, where an,j (j = 0, 1, . . . , k− 1) are complex numbers.
Let hj(z) (j = 0, 1, . . . , k − 1) be entire functions with σ(hj) < n. Suppose that
there exist nonzero complex numbers an,s and an,l such that 0 < s < l ≤ k − 1,
an,s = |an,s| eiθs , an,l = |an,l| eiθl , θs, θl ∈ [0, 2π), θs 6= θl, hshl 6≡ 0 and for j 6= s, l,
an,j satisfies either an,j = djan,s (0 < dj < 1) or an,j = djan,l (0 < dj < 1). Then
every transcendental solution f of equation (1.2) satisfies σ(f) = +∞. Furthermore,
if f is a polynomial solution of equation (1.2), then deg f ≤ s− 1; if s = 1, then every
nonconstant solution f of equation (1.2) satisfies σ(f) = +∞.

Recently, Xiao and Chen considered higher order linear differential equations and
proved the following result.

Theorem 1.7 ([20]). Let k ≥ 2 be an integer, Aj(z) (j = 0, 1, . . . , k − 1) be entire
functions with σ(Aj) < 1 and aj (j = 0, 1, . . . , k − 1) be complex numbers. If Aj 6≡ 0,
then aj 6= 0. Suppose that there exists {ai1 , ai2 , . . . , aim} ⊂ {a1 , a2 , . . . , ak−1} such that
arg aij (j = 1, 2, . . . ,m) are distinct and for every nonzero al ∈ {a1 , a2 , . . . , ak−1} \
{ai1 , ai2 , . . . , aim}, there exists some aij ∈ {ai1 , ai2 , . . . , aim} such that al = c

(ij)
l aij

(0 < c
(ij)
l < 1). Then every transcendental solution of equation

f (k) +Ak−1(z)eak−1zf (k−1) + . . .+A1(z)ea1zf +A0(z)ea0zf = 0 (1.3)

is of infinite order. Furthermore, if a0 = aij0
or a0 = c

(ij0 )
0 aij0

(0 < c
(ij0 )
0 6= c

(ij0 )
s < 1),

where s ∈ {1, . . . , k − 1} and aij0
∈ {ai1 , ai2 , . . . , aim} , then every solution f(6≡ 0) of

equation (1.3) is of infinite order.

In 2008, Belaïdi and Abbas [4] considered equations of the form (1.2), where hj(z)
(j = 0, . . . , k − 1) are entire functions. Recently, Habib and Belaïdi [13] studied higher
order linear differential equations with meromorphic functions. In this paper, we
continue the research in this type of problems. The main purpose of this paper is to
extend and improve the above results to equations of the form (1.2) with meromorphic
coefficients. We also consider the nonhomogeneous case. We will prove the following
results.
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Theorem 1.8. Let k ≥ 2 be an integer and Pj(z) =
∑n
i=0 ai,jz

i (j = 0, 1, . . . , k−1) be
nonconstant polynomials with degree n ≥ 1, where a0,j , a1,j , . . . , an,j (j = 0, . . . , k − 1)
are complex numbers. Let hj(z) (j = 0, 1, . . . , k − 1) be meromorphic functions with
σ(hj) < n. Suppose that there exists s ∈ {1, . . . , k − 1} such that hs 6≡ 0, an,j = cjan,s
(0 < cj < 1) (j 6= s). Then every transcendental meromorphic solution f whose
poles are of uniformly bounded multiplicity of equation (1.2) is of infinite order and
satisfies σ2(f) = n. Furthermore, if h0 6≡ 0 and max {c1, . . . , cs−1} < c0, then every
meromorphic solution f( 6≡ 0) whose poles are of uniformly bounded multiplicity of
equation (1.2) is of infinite order and satisfies σ2(f) = n.

Example 1.9. Consider the linear differential equation

f ′′′ −
(3z + 2
z + 1

)
ezf ′′ +

(2z + 1
z + 1

)
e2zf ′ −

(
1 + 3

z

)
ezf = 0.

Obiviously, the conditions of Theorem 1.8 are satisfied. So, every transcendental
meromorphic solution f of this equation whose poles are of uniformly bounded
multiplicity is of infinite order and satisfies σ2(f) = 1. Remark that f(z) = zee

z

is a solution of this equation with σ(f) = +∞ and σ2(f) = 1.

Theorem 1.10. Let k ≥ 2 be an integer, Pj(z) =
∑n
i=0 ai,jz

i (j = 0, . . . , k − 1) be
polynomials with degree n ≥ 1, where a0,j , . . . , an,j (j = 0, . . . , k − 1) are complex
numbers. Let hj(z) (j = 0, . . . , k − 1) be meromorphic functions with σ(hj) < n.
Suppose that there exist s, d ∈ {1, . . . , k − 1} such that hshd 6≡ 0, an,s = |an,s| eiθs ,
an,d = |an,d| eiθd ,θs, θd ∈ [0, 2π), θs 6= θd and for j ∈ {0, . . . , k − 1}� {d, s} , an,j
satisfies either an,j = cjan,s or an,j = cjan,d (0 < cj < 1). Then every transcendental
meromorphic solution f whose poles are of uniformly bounded multiplicity of equation
(1.2) is of infinite order and satisfies σ2(f) = n.

Theorem 1.11. Let k ≥ 2 be an integer and Pj(z) =
∑n
i=0 ai,jz

i (j=0, 1, . . . , k−1)
be polynomials with degree n ≥ 1, where a0,j , . . . , an,j (j = 0, . . . , k − 1) are complex
numbers. Let hj(z) (j = 0, 1, . . . , k − 1) be meromorphic functions with σ(hj) < n.
If hj 6≡ 0, then an,j 6= 0. Suppose that there exists {an,i1 , an,i2 , . . . , an,im} ⊂{
a

n,1 , an,2 , . . . , an,k−1
}
such that arg an,ij (j = 1, 2, . . . ,m) are distinct and for every

nonzero

an,l ∈
{
a

n,1 , an,2 , . . . , an,k−1
}
� {an,i1 , an,i2 , . . . , an,im} ,

there exists some an,ij ∈ {an,i1 , an,i2 , . . . , an,im} such that an,l = c
(ij)
l an,ij (0 <

c
(ij)
l < 1). Then every transcendental meromorphic solution f whose poles are of
uniformly bounded multiplicity of equation (1.2) is of infinite order and satisfies
σ2(f) = n. Furthermore, if an,0 = an,ij0

or an,0 = c
(ij0 )
0 an,ij0

(0 < c
(ij0 )
0 6= c

(ij0 )
s < 1),

where s ∈ {1, . . . , k − 1} and an,ij0
∈ {an,i1 , an,i2 , . . . , an,im} , then every meromorphic

solution f( 6≡ 0) whose poles are of uniformly bounded multiplicity of equation (1.2) is
of infinite order and satisfies σ2(f) = n.
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Theorem 1.12. Let k ≥ 2 be an integer, Pj(z), hj(z) and an,j (j = 0, 1, . . . , k − 1)
satisfy hypotheses of Theorem 1.8 or Theorem 1.10 or Theorem 1.11. Let F 6≡ 0 be
a meromorphic function of order σ(f) < n. Then every transcendental meromorphic
solution f whose poles are of uniformly bounded multiplicity of the linear differential
equation

f (k) + hk−1(z)ePk−1(z)f (k−1) + . . .+ h1(z)eP1(z)f + h0(z)eP0(z)f = F (1.4)

is of infinite order and satisfies λ2(f) = λ2(f) = σ2(f) = n with at most one
exceptional solution f0 of finite order.

Remark 1.13. It is well-known that a linear differential equation with holomorphic
coefficients must have holomorphic solutions. But the characteristic of solutions is more
complicated for a linear differential equation with meromorphic coefficients. For some
works related to existence of meromorphic solutions of linear differential equations,
see [10,17,22].

2. PRELIMINARY LEMMAS

Lemma 2.1 ([1]). Let Pj(z) (j = 0, 1, . . . , k) be polynomials with degP0(z) = n
(n ≥ 1) and degPj(z) ≤ n (j = 0, 1, . . . , k). Let Aj(z) (j = 0, . . . , k) be meromorphic
functions with finite order and max{σ(Aj) : j = 0, 1, . . . , k} < n such that A0(z) 6≡ 0.
We denote

F (z) = Ak(z)ePk(z) +Ak−1(z)ePk−1(z) + . . .+A1(z)eP1(z) +A0(z)eP0(z).

If deg(P0(z) − Pj(z)) = n for all j = 1, . . . , k, then f is a nontrivial meromorphic
function with finite order and satisfies σ(F ) = n.

Lemma 2.2 ([11]). Let f(z) be a transcendental meromorphic function and let
α > 1 and ε > 0 be given constants. Then there exist a set E1 ⊂ (1,+∞) having
finite logarithmic measure and a constant B > 0 that depends only on α and (i, j)
(i, j positive integers with i > j) such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1,
we have ∣∣∣∣

f (i)(z)
f (j)(z)

∣∣∣∣ ≤ B
[
T (αr, f)

r
(logα r) log T (αr, f)

]i−j
.

Lemma 2.3 ([19]). Let g(z) be a transcendental entire function and νg(r) be the
central index of g. For each sufficiently large |z| = r, let zr = reiθr be a point satisfying
|g(zr)| = M(r, g). Then there exist a constant δr (> 0) and a set E2 of finite logarithmic
measure such that for all z satisfying |z| = r /∈ E2 and arg z = θ ∈ [θr − δr, θr + δr],
we have

g(n)(z)
g(z) =

(
νg(r)
z

)n
(1 + o(1)) (n ≥ 1 is an integer).

Lemma 2.4 ([11, p. 89]). Let f(z) be a transcendental meromorphic function of
finite order σ. Let Γ = {(k1, j1), (k2, j2), . . . , (km, jm)} denote a set of distinct pairs
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of integers satisfying ki > ji ≥ 0 (i = 1, 2, . . . ,m) and let ε > 0 be a given constant.
Then there exists a set E3 ⊂ [1,+∞) having finite logarithmic measure such that for
all z satisfying |z| = r /∈ [0, 1] ∪ E3 and (k, j) ∈ Γ, we have

∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣ ≤ |z|
(k−j)(σ−1+ε)

.

Lemma 2.5. Let f(z) = g(z)/d(z) be a meromorphic function with σ(f) = σ ≤ +∞,
where g(z) and d(z) are entire functions satisfying one of the following conditions:

(i) g being transcendental and d being polynomial,
(ii) g, d all being transcendental and λ(d) = σ(d) = β < σ(g) = σ.

For each sufficiently large |z| = r, let zr = reiθr be a point satisfying |g(zr)| =
M(r, g) and let νg(r) be the central index of g. Then there exist a constant δr (> 0),
a sequence {rm}m∈N , rm → +∞ and a set E4 of finite logarithmic measure such that
the estimation

f (n)(z)
f(z) =

(
νg(rm)
z

)n
(1 + o(1)) (n ≥ 1 is an integer)

holds for all z satisfying |z| = rm /∈ E4, rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr].

Proof. By mathematical induction, we obtain

f (n) = g(n)

d
+
n−1∑

j=0

g(j)

d

∑

(j1...jn)

Cjj1...jn

(
d′

d

)j1

. . .

(
d(n)

d

)jn

, (2.1)

where Cjj1...jn
are constants and j + j1 + 2j2 + . . .+ njn = n. Hence

f (n)

f
= g(n)

g
+
n−1∑

j=0

g(j)

g

∑

(j1...jn)

Cjj1...jn

(
d′

d

)j1

. . .

(
d(n)

d

)jn

. (2.2)

For each sufficiently large |z| = r, let zr = reiθr be a point satisfying |g(zr)| = M(r, g).
By Lemma 2.3, there exist a constant δr (> 0) and a set E2 of finite logarithmic
measure such that for all z satisfying |z| = r /∈ E2 and arg z = θ ∈ [θr − δr, θr + δr],
we have

g(j)(z)
g(z) =

(
νg(r)
z

)j
(1 + o(1)) (j = 1, 2, . . . , n), (2.3)

where νg(r) is the central index of g. Substituting (2.3) into (2.2) yields

f (n)(z)
f(z) =

(νg(r)
z

)n
[

(1 + o(1)) +
n−1∑

j=0

(
νg(r)
z

)j−n
(1 + o(1))

×
∑

(j1...jn)

Cjj1...jn

(
d′

d

)j1

. . .

(
d(n)

d

)jn
]
.

(2.4)
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We can choose a constant ρ such that β < ρ < σ. By Lemma 2.4, for any given ε
(0 < 2ε < ρ− β), we have

∣∣∣∣
d(s)(z)
d(z)

∣∣∣∣ ≤ rs(β−1+ε) (s = 1, 2, . . . , n), (2.5)

where |z| = r /∈ [0, 1] ∪ E3, E3 ⊂ (1,+∞) with lm(E3) < +∞. From this and
j1 + 2j2 + . . .+ njn = n− j, we have

|z|n−j
∣∣∣∣∣

(
d′

d

)j1

. . .

(
d(n)

d

)jn

∣∣∣∣∣ ≤ |z|
(n−j)(β+ε) (2.6)

for |z| = r /∈ [0, 1] ∪ E3. By the Wiman-Valiron theory [17, p. 51], we have

σ(g) = lim sup
r→+∞

log νg(r)
log r = σ.

Then, by the definition of the limit superior, there exists a sequence {r′m} (r′m → +∞)
satisfying

lim
r′m→+∞

log νg(r′m)
log r′m

= σ. (2.7)

Setting the logarithmic measure of E4 = [0, 1] ∪ E2 ∪ E3, lm(E4) = δ < +∞. We
have [r′m, (δ + 1)r′m] \ E4 6= ∅. Indeed, if [r′m, (δ + 1)r′m] \ E4 = ∅, then for all
m ∈ N, [r′m, (δ + 1)r′m] ⊂ E4. It follows that

⋃
m∈N[r′m, (δ + 1)r′m] ⊂ E4 and

lm( ∪
m∈N

[r′m, (δ + 1)r′m]) =
∞∑

m=0

(δ+1)r′m∫

r′m

dt

t
=
∞∑

m=0
log(δ + 1) =∞ ≤ lm(E4) = δ

which is a contraction. So, there exists a point rm ∈ [r′m, (δ + 1)r′m] \ E4. Since

log νg(rm)
log rm

≥ log νg(r′m)
log[(δ + 1)r′m] = log νg(r′m)

(log r′m)[1 + log(δ+1)
log r′m

]
, (2.8)

then we have
lim

rm→+∞
log νg(rm)

log rm
= σ. (2.9)

Hence for sufficiently large m, we obtain

νg(rm) ≥ rσ−εm ≥ rρ−εm , (2.10)

where σ − ε can be replaced by a large enough number M if σ = +∞. This and (2.5)
lead to

∣∣∣∣∣

(
νg(r)
z

)j−n(
d′

d

)j1

. . .

(
d(n)

d

)jn

∣∣∣∣∣ ≤ r
(n−j)(β−ρ+2ε)
m → 0, rm → +∞, (2.11)

where |z| = rm /∈ E4 and arg z = θ ∈ [θr−δr, θr+δr]. From (2.4) and (2.11), we obtain
our result.
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Lemma 2.6. Let f(z) = g(z)/d(z) be a meromorphic function with σ(f) = σ ≤ +∞,
where g(z) and d(z) are entire functions satisfying one of the following conditions:

(i) g being transcendental and d being polynomial,
(ii) g, d all being transcendental and λ(d) = σ(d) = ρ < σ(g) = σ.

For each sufficiently large |z| = r, let zr = reiθr be a point satisfying |g(zr)| = M(r, g).
Then there exist a constant δr (> 0), a sequence {rm}m∈N , rm → +∞ and a set E5
of finite logarithmic measure such that the estimation

∣∣∣∣
f(z)
f (n)(z)

∣∣∣∣ ≤ r2n
m (n ≥ 1 is an integer)

holds for all z satisfying |z| = rm /∈ E5, rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr].

Proof. Let zr = reiθr be a point satisfying |g(zr)| = M(r, g). By Lemma 2.5, there
exist a constant δr (> 0), a sequence {rm}m∈N , rm → +∞ and a set E5 of finite
logarithmic measure such that the estimation

f (n)(z)
f(z) =

(νg(rm)
z

)n
(1 + o(1)) (n ≥ 1 is an integer) (2.12)

holds for all z satisfying |z| = rm /∈ E5, rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr].
On the other hand, we obtain for any given ε > 0 and sufficiently large m

νg(rm) ≥ rσ−εm , (2.13)

where σ − ε can be replaced by a large enough number M if σ = +∞. Hence we have
∣∣∣∣
f(z)
f (n)(z)

∣∣∣∣ ≤ r2n
m . (2.14)

Lemma 2.7 ([14]). Let P (z) = (α+ iβ)zn + . . . (α, β are real numbers, |α|+ |β| 6= 0)
be a polynomial with degree n ≥ 1 and A(z) be a meromorphic function with σ(A) < n.
Set f(z) = A(z)eP (z) (z = reiθ), δ(P, θ) = α cosnθ − β sinnθ. Then for any given
ε > 0, there exists a set E6 ⊂ [1,+∞) having finite logarithmic measure such that
for any θ ∈ [0, 2π) \H (H = {θ ∈ [0, 2π) : δ(P, θ) = 0}) and for |z| = r /∈ [0, 1] ∪ E6,
r → +∞, we have

(i) if δ(P, θ) > 0, then

exp {(1− ε)δ(P, θ)rn} ≤
∣∣f(reiθ)

∣∣ ≤ exp {(1 + ε)δ(P, θ)rn} ,

(ii) if δ(P, θ) < 0, then

exp {(1 + ε)δ(P, θ)rn} ≤
∣∣f(reiθ)

∣∣ ≤ exp {(1− ε)δ(P, θ)rn} .
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Lemma 2.8 ([12]). Let ϕ : [0,+∞) → R and ψ : [0,+∞) → R be monotone
non-decreasing functions such that ϕ(r) ≤ ψ(r) for all r /∈ E7 ∪ [0, 1], where
E7 ⊂ (1,+∞) is a set of finite logarithmic measure. Let α > 1 be a given constant.
Then there exists an r0 = r0(α) > 0 such that ϕ(r) ≤ ψ(αr) for all r > r0.

Lemma 2.9 ([8]). Let k ≥ 2 be an integer and let Aj(z) (j = 0, 1, . . . , k − 1) be
meromorphic functions of finite order. Set ρ = max{σ(Aj) : j = 0, 1, . . . , k − 1}.
If f is a transcendental meromorphic solution whose poles are of uniformly bounded
multiplicity of the equation

f (k) +Ak−1(z)f (k−1) + . . .+A1(z)f ′ +A0(z)f = 0,

then σ2(f) ≤ ρ.
Lemma 2.10 ([5]). Let f(z) = g(z)/d(z) be a meromorphic function with σ(f) =
σ ≤ +∞, where g(z) and d(z) are entire functions satisfying one of the following
conditions:
(i) g being transcendental and d being polynomial,
(ii) g, d all being transcendental and λ(d) = σ(d) = β < σ(g) = σ.

Let νg(r) be the central index of g. Then there exist a sequence {rm}m∈N , rm → +∞
and a set E8 of finite logarithmic measure such that the estimation

f (n)(z)
f(z) =

(
νg(rm)
z

)n
(1 + o(1)) (n ≥ 1 is an integer)

holds for all z satisfying |z| = rm /∈ E8, rm → +∞ and |g(z)| = M(rm, g).
Lemma 2.11 ([6]). Let g(z) be a transcendental meromorphic function of order
σ(g) = σ < +∞. Then for any given ε > 0, there exists a set E9 ⊂ (1,+∞) that has
finite logarithmic measure such that

|g(z)| ≤ exp
{
rσ+ε}

holds for |z| = r /∈ [0, 1] ∪ E9, r → +∞.

Lemma 2.12 ([9]). Let f(z) =
∞∑
n=0

an z
n be an entire function of infinite order with

the hyper-order σ2(f) = σ and let νf (r) be the central index of f . Then

lim sup
r→+∞

log log νf (r)
log r = σ.

Lemma 2.13. Let k ≥ 2 be an integer, A0(z), . . . , Ak−1(z) and F ( 6≡ 0) be mero-
morphic functions of finite order and let σ = max{σ(F ), σ(Aj) : j = 0, . . . , k − 1}.
If f is an infinite order meromorphic solution whose poles are of uniformly bounded
multiplicity of equation

f (k) +Ak−1(z)f (k−1) + . . .+A1(z)f ′ +A0(z)f = F, (2.15)

then σ2(f) ≤ σ.
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Proof. Assume that f is an infinite order meromorphic solution whose poles are of
uniformly bounded multiplicity of equation (2.15). By (2.15), we have

∣∣∣∣
f (k)

f

∣∣∣∣ ≤ |Ak−1(z)|
∣∣∣∣
f (k−1)

f

∣∣∣∣+ . . .+ |A1(z)|
∣∣∣∣
f ′

f

∣∣∣∣+
∣∣∣∣
F

f

∣∣∣∣+ |A0(z)| . (2.16)

By (2.15), it follows that the poles of f can only occur at the poles of Aj
(j = 0, . . . , k − 1) and F . Note that the poles of f are of uniformly bounded mul-
tiplicity. Hence λ(1/f) ≤ σ. By the Hadamard factorization theorem, we know that f
can be written as f(z) = g(z)

d(z) , where g(z) and d(z) are entire functions with

λ(d) = σ(d) = λ(1/f) ≤ σ < σ(f) = σ(g) = +∞

and σ2(f) = σ2(g). By Lemma 2.10, there exist a sequence {rm}m∈N , rm → +∞ and
a set E8 of finite logarithmic measure such that the estimation

f (j)(z)
f(z) =

(
νg(rm)
z

)j
(1 + o(1)) (j = 1, . . . , k) (2.17)

holds for all z satisfying |z| = rm /∈ E8, rm → +∞ and |g(z)| = M(rm, g). By
Lemma 2.11, for any given ε > 0, there exists a set E9 ⊂ (1,+∞) that has finite
logarithmic measure, such that

|F (z)| ≤ exp
{
rσ+ε} , |d(z)| ≤ exp

{
rσ+ε} (2.18)

and
|Aj(z)| ≤ exp

{
rσ+ε} (j = 0, . . . , k − 1) (2.19)

hold for |z| = r /∈ [0, 1] ∪ E9, r → +∞. Since M(r, g) ≥ 1 for r sufficiently large, it
follows from (2.18) that

∣∣∣∣
F (z)
f(z)

∣∣∣∣ = |F (z)| |d(z)|
|g(z)| = |F (z)| |d(z)|

M(r, g) ≤ exp
{

2rσ+ε} (2.20)

for |z| = r /∈ [0, 1] ∪ E9, r → +∞. Substituting (2.17), (2.19) and (2.20) into (2.16),
we obtain

(νg(rm))k |1 + o(1)| ≤ (k + 1)rkm(νg(rm))k−1 |1 + o(1)| exp
{

2rσ+ε
m

}
(2.21)

for all z satisfying |z| = rm /∈ [0, 1] ∪E8 ∪E9, r → +∞ and |g(z)| = M(rm, g). Thus,
by (2.21), Lemma 2.8 and Lemma 2.12, we have

σ2(g) = lim sup
rm→+∞

log log νf (rm)
log rm

≤ σ + ε.

Since ε > 0 is arbitrary, it follows that σ2(f) ≤ σ.
Lemma 2.14. ([3]) Let A0, A1, . . . , Ak−1, F ( 6≡ 0) be finite order meromorphic
functions. If f is an infinite order meromorphic solution of equation (2.15), then
λ2(f) = λ2(f) = σ2(f).
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3. PROOF OF THEOREM 1.8

First we prove that every transcendental meromorphic solution f of equation (1.2)
is of order σ(f) ≥ n. Assume that f is a transcendental meromorphic solution f of
equation (1.2) of order σ(f) < n. We can write equation (1.2) in the form

k−1∑

j=0
hj(z)f (j)ePj(z) = −f (k), (3.1)

where hjf (j) (j = 0, 1, . . . , k − 1) are meromorphic functions of finite order with
σ(hjf (j)) < n. We have hsf (s) 6≡ 0. Indeed, if hsf (s) ≡ 0, it follows that f (s) ≡ 0.
Then f has to be a polynomial of degree less than s. This is a contradiction. Since
an,j = αjan,s (0 < αj < 1) (j 6= s), we get deg(Ps(z)− Pj(z)) = n (j 6= s). Thus by
(3.1) and Lemma 2.1, we have σ(−f (k)) = n and this is a contradiction. Hence every
transcendental meromorphic solution f of equation (1.2) is of order σ(f) ≥ n.

Assume f is a transcendental meromorphic solution whose poles are of uniformly
bounded multiplicity of equation (1.2). By Lemma 2.2, there exist a constant B > 0
and a set E1 ⊂ (1,+∞) having finite logarithmic measure such that for all z satisfying
|z| = r /∈ [0, 1] ∪ E1, we have

∣∣∣∣
f (j)(z)
f (i)(z)

∣∣∣∣ ≤ B[T (2r, f)]j+1 (0 ≤ i < j ≤ k). (3.2)

By (1.2), it follows that the poles of f can only occur at the poles of hj(z) (j =
0, . . . , k − 1). Note that the poles of f are of uniformly bounded multiplicity. Hence

λ(1/f) ≤ max {σ(hj) : j = 0, . . . , k − 1} < n.

By the Hadamard factorization theorem, we know that f can be written as f(z) = g(z)
d(z) ,

where g(z) and d(z) are entire functions with

λ(d) = σ(d) = λ(1/f) < n ≤ σ(f) = σ(g).

For each sufficiently large |z| = r, let zr = reiθr be a point satisfying |g(zr)| = M(r, g).
By Lemma 2.6, there exist a constant δr (> 0), a sequence {rm}m∈N , rm → +∞ and
a set E5 of finite logarithmic measure such that the estimation

∣∣∣∣
f(z)
f (i)(z)

∣∣∣∣ ≤ r2i
m (i ≥ 1 is an integer) (3.3)

holds for all z satisfying |z| = rm /∈ E5, rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr].
For any given θ ∈ [θr − δr, θr + δr] \ H1, where H1 = {θ ∈ [0, 2π) : δ(Ps, θ) = 0},
we have

δ(Ps, θ) > 0 or δ(Ps, θ) < 0.
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Case 1. δ(Ps, θ) > 0. Put α = max {cj : j 6= s)}. Then 0 < α < 1. By Lemma 2.7,
for any given ε (0 < 2ε < 1−α

1+α ), there exists a set E6 ⊂ [1,+∞) having finite
logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E6, r → +∞
and arg z = θ ∈ [θr − δr, θr + δr] \H1, we have

∣∣∣hs(z)ePs(z)
∣∣∣ ≥ exp{(1− ε)δ(Ps, θ)rn} (3.4)

and ∣∣∣hj(z)ePj(z)
∣∣∣ ≤ exp{(1 + ε)αδ(Ps, θ)rn} (j 6= s). (3.5)

We can rewrite (1.2) as

hs(z)ePs(z) = f (k)

f (s) + hk−1(z)ePk−1(z) f
(k−1)

f (s)

+ hs+1(z)ePs+1(z) f
(s+1)

f (s) + hs−1(z)ePs−1(z) f
(s−1)

f

f

f (s)

+ . . .+ h1(z)eP1(z) f
′

f

f

f (s) + h0(z)eP0(z) f

f (s) .

(3.6)

Substituting (3.2)–(3.5) into (3.6), for all z satisfying |z| = rm /∈ [0, 1] ∪E1 ∪E5 ∪E6,
rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr] \H1, we obtain

exp {(1− ε)δ(Ps, θ)rnm}
≤M1r

2s
m exp {(1 + ε)αδ(Ps, θ)rnm} [T (2rm, f)]k+1,

(3.7)

where M1 (> 0) is a constant. Hence by using Lemma 2.8 and (3.7), we obtain
σ(f) = +∞ and σ2(f) ≥ n. From this and Lemma 2.9, we have σ2(f) = n.

Case 2. δ(Ps, θ) < 0. Set β = min {cj : j 6= s} > 0. By Lemma 2.7, for any given ε
(0 < 2ε < 1), there exists a set E6 ⊂ [0, 2π) having finite logarithmic measure such that
for all z satisfying |z| = r /∈ [0, 1]∪E6, r → +∞ and arg z = θ ∈ [θr− δr, θr + δr] \H1,
we have ∣∣∣hs(z)ePs(z)

∣∣∣ ≤ exp{(1− ε)δ(Ps, θ)rn} (3.8)

and ∣∣∣hj(z)ePj(z)
∣∣∣ ≤ exp{(1− ε)βδ(Ps, θ)rn} (j 6= s). (3.9)

By (1.2), we get

−1 = hk−1(z)ePk−1(z) f
(k−1)

f

f

f (k) + . . .+ hs(z)ePs(z) f
(s)

f

f

f (k)

+ . . .+ h1(z)eP1(z) f
′

f

f

f (k) + h0(z)eP0(z) f

f (k) .

(3.10)

Substituting (3.2), (3.3), (3.8) and (3.9) into (3.10), for all z satisfying |z| = rm /∈
[0, 1] ∪ E1 ∪ E5 ∪ E6, rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr] \H1, we obtain

1 ≤M2r
2k
m exp {(1− ε)βδ(Ps, θ)rnm} [T (2rm, f)]k+1, (3.11)
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where M2 (> 0) is a constant. Hence by using Lemma 2.8 and (3.11), we obtain
σ(f) = +∞ and σ2(f) ≥ n. From this and Lemma 2.9, we have σ2(f) = n.

Suppose now that h0 6≡ 0 and max {c1, . . . , cs−1} < c0. If f is a rational solution of
(1.2), then by h0 6≡ 0 and max {c1, . . . cs−1} < c0, the hypotheses of Theorem 1.8 and

f = −
(

1
h0(z)e

−P0(z)f (k) + hk−1(z)
h0(z) ePk−1(z)−P0(z)f (k−1)

+ . . .+ h1(z)
h0(z)e

P1(z)−P0(z)f ′
)
,

(3.12)

we obtain a contradiction since the left side of equation (3.12) is a rational function
but the right side is a transcendental meromorphic function.

Now we prove that equation (1.2) cannot have a nonzero polynomial solution. Set
γ = max {c1, . . . , cs−1} < c0 and let f be a nonzero polynomial solution of equation
(1.2) with deg f = q. We take a ray arg z = θ ∈ [0, 2π) \H1 such that δ(Ps, θ) > 0. By
Lemma 2.7, for any given ε (0 < 2ε < min

{
1−α
1+α ,

c0−γ
c0+γ

}
), there exists a set E6 ⊂ [0, 2π)

having finite logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E6,
r → +∞ and arg z = θ, we have (3.4), (3.5),

∣∣∣h0(z)eP0(z)
∣∣∣ ≤ exp{(1 + ε)c0δ(Ps, θ)rn}, (3.13)

and ∣∣∣hj(z)ePj(z)
∣∣∣ ≤ exp{(1 + ε)γδ(Ps, θ)rn} (j = 1, . . . , s− 1). (3.14)

If q ≥ s, then by (1.2), (3.4) and (3.5), for all z with |z| = r /∈ [0, 1] ∪ E6, r → +∞
and arg z = θ, we obtain

M3r
q−s exp {(1− ε)δ(Ps, θ)rn} ≤

∣∣∣hs(z)ePs(z)
∣∣∣
∣∣∣f (s)(z)

∣∣∣

≤
∑

j 6=s

∣∣∣hj(z)ePj(z)
∣∣∣
∣∣∣f (j)(z)

∣∣∣

≤M4r
q exp {(1 + ε)αδ(Ps, θ)rn} ,

(3.15)

where M3,M4 (> 0) are constants. Hence (3.15) is a contradiction.
If q < s, then by (1.2), (3.13) and (3.14), for all z with |z| = r /∈ [0, 1]∪E6, r → +∞

and arg z = θ, we obtain

M5r
s−1 exp {(1− ε)c0δ(Ps, θ)rn} ≤

∣∣∣h0(z)eP0(z)
∣∣∣ |f(z)|

≤
s−1∑

j=1

∣∣∣hj(z)ePj(z)
∣∣∣
∣∣∣f (j)(z)

∣∣∣

≤M6r
s−2 exp {(1 + ε)γδ(Ps, θ)rn} ,

(3.16)

where M5,M6 (> 0) are constants. By (3.16), we get a contradiction. Therefore, if
h0 6≡ 0 and max {c1, . . . , cs−1} < c0, then every meromorphic solution whose poles are
of uniformly bounded multiplicity of equation (1.2) is of infinite order and satisfies
σ2(f) = n.
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4. PROOF OF THEOREM 1.10

First we prove that every transcendental meromorphic solution f of equation (1.2)
is of order σ(f) ≥ n. Assume that f is a transcendental meromorphic solution f
of equation (1.2) of order σ(f) < n. We can write equation (1.2) in the form (3.1),
where hjf (j) (j = 0, 1, . . . , k − 1) are meromorphic functions of finite order with
hsf

(s) 6≡ 0, hdf (d) 6≡ 0 and σ(hjf (j)) < n (j = 0, 1, . . . , k − 1). Since θs 6= θd, it
follows that deg(Ps(z)− Pj(z)) = n (j 6= s). Thus by (3.1) and Lemma 2.1, we have
σ(−f (k)) = n and this is a contradiction. Hence every transcendental meromorphic
solution f of equation (1.2) is of order σ(f) ≥ n.

Assume f is a transcendental meromorphic solution whose poles are of uniformly
bounded multiplicity of equation (1.2). By Lemma 2.2, there exist a constant B > 0
and a set E1 ⊂ (1,+∞) having finite logarithmic measure such that for all z satisfying
|z| = r /∈ [0, 1] ∪ E1, we have (3.2). By (1.2), it follows that the poles of f can only
occur at the poles of hj (j = 0, . . . , k − 1). Note that the poles of f are of uniformly
bounded multiplicity. Hence

λ(1/f) ≤ max {σ(hj) : j = 0, . . . , k − 1} < n.

By the Hadamard factorization theorem, we know that f can be written as f(z) = g(z)
d(z) ,

where g(z) and d(z) are entire functions with

λ(d) = σ(d) = λ(1/f) < n ≤ σ(f) = σ(g).

For each sufficiently large |z| = r, let zr = reiθr be a point satisfying |g(zr)| = M(r, g).
By Lemma 2.6, there exist a constant δr (> 0), a sequence {rm}m∈N , rm → +∞ and
a set E5 of finite logarithmic measure such that the estimation (3.3) holds for all z
satisfying |z| = rm /∈ E5, rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr]. Set

H2 = {θ ∈ [0, 2π) : δ(Ps, θ) = 0 or δ(Pd, θ) = 0}

and
H3 = {θ ∈ [0, 2π) : δ(Ps, θ) = δ(Pd, θ)} .

For any given θ ∈ [θr − δr, θr + δr] \ (H4 ∪H5), we have

δ(Ps, θ) 6= 0, δ(Pd, θ) 6= 0 and δ(Ps, θ) > δ(Pd, θ) or δ(Ps, θ) < δ(Pd, θ).

Set δ1 = δ(Ps, θ) and δ2 = δ(Pd, θ).
Case 1. δ1 > δ2. Here we also divide our proof in three subcases.
Subcase 1.1. δ1 > δ2 > 0. Set δ3 = max {δ(Pj , θ) : j 6= s} . Then 0 < δ3 < δ1. Thus by
Lemma 2.7, for any given ε (0 < 2ε < δ1−δ3

δ1+δ3
), there exists a set E6 ⊂ (1,+∞) having

finite logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E6, r → +∞
and arg z = θ ∈ [θr − δr, θr + δr] \ (H2 ∪H3), we have

∣∣∣hs(z)ePs(z)
∣∣∣ ≥ exp{(1− ε)δ1r

n} (4.1)
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and ∣∣∣hj(z)ePj(z)
∣∣∣ ≤ exp{(1 + ε)δ3r

n} (j 6= s). (4.2)

Substituting (3.2), (3.3), (4.1) and (4.2) into (3.6), for all z satisfying |z| = rm /∈
[0, 1]∪E1∪E5∪E6, rm → +∞ and arg z = θ ∈ [θr− δr, θr + δr]\ (H2∪H3), we obtain

exp{(1− ε)δ1r
n
m} ≤M1r

2s
m exp {(1 + ε)δ3r

n
m} [T (2rm, f)]k+1, (4.3)

where M1(> 0) is a constant. Hence by using Lemma 2.8 and (4.3), we obtain
σ(f) = +∞ and σ2(f) ≥ n. From this and Lemma 2.9, we have σ2(f) = n.

Subcase 1.2. δ1 > 0 > δ2. Set γ = max {cj : j 6= s, d} . By Lemma 2.7, for any given
ε (0 < 2ε < 1−γ

1+γ ), there exists a set E6 ⊂ (1,+∞) having finite logarithmic measure
such that for all z satisfying |z| = r /∈ [0, 1] ∪ E6, r → +∞ and arg z = θ ∈
[θr − δr, θr + δr] \ (H2 ∪H3), we have (4.1) and

∣∣∣hj(z)ePj(z)
∣∣∣ ≤ exp{(1 + ε)γδ1r

n} (j 6= s). (4.4)

Substituting (3.2), (3.3), (4.1) and (4.4) into (3.6), for all z satisfying |z| = rm /∈
[0, 1]∪E1∪E5∪E6, rm → +∞ and arg z = θ ∈ [θr− δr, θr + δr]\ (H2∪H3), we obtain

exp {(1− ε)δ1r
n
m} ≤M2r

2s
m exp {(1 + ε)γδ1r

n
m} [T (2rm, f)]k+1, (4.5)

where M2 (> 0) is a constant. Hence by using Lemma 2.8 and (4.5), we obtain
σ(f) = +∞ and σ2(f) ≥ n. From this and Lemma 2.9, we have σ2(f) = n.

Subcase 1.3. 0 > δ1 > δ2. Set λ = min {cj : j 6= s, d)} . By Lemma 2.7, for any
given ε (0 < 2ε < 1), there exists a set E6 ⊂ (1,+∞) having finite logarithmic
measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E6, r → +∞ and arg z = θ ∈
[θr − δr, θr + δr] \ (H2 ∪H3), we have (3.8) and

∣∣∣hj(z)ePj(z)
∣∣∣ ≤ exp{(1− ε)λδ1r

n} (j 6= s). (4.6)

Substituting (3.2), (3.3), (3.8) and (4.6) into (3.10), for all z satisfying |z| = rm /∈
[0, 1]∪E1∪E5∪E6, rm → +∞ and arg z = θ ∈ [θr− δr, θr + δr]\ (H2∪H3), we obtain

1 ≤M3r
2k
m exp {(1− ε)λδ1r

n
m} [T (2rm, f)]k+1, (4.7)

where M3 (> 0) is a constant. Hence by using Lemma 2.8 and (4.7), we obtain
σ(f) = +∞ and σ2(f) ≥ n. From this and Lemma 2.9, we have σ2(f) = n.

Case 2. δ1 < δ2. Using the same reasoning as in Case 1, we can also obtain σ(f) = +∞
and σ2(f) = n.

5. PROOF OF THEOREM 1.11

First we prove that every transcendental meromorphic solution f of equation (1.2)
is of order σ(f) ≥ n. Assume that f is a transcendental meromorphic solution f of
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equation (1.2) of order σ(f) < n. We can rewrite equation (1.2) in the form (3.1),
where hjf (j) (j = 0, 1, . . . , k − 1) are meromorphic functions of order σ(hjf (j)) < n
(j = 0, 1, . . . , k − 1). We have hisf (is) 6≡ 0 (s = 1, . . . ,m). Indeed, if hisf (is) ≡ 0, it
follows that f (is) ≡ 0. Then f has to be a polynomial of degree less than is. This
is a contradiction. We also have deg(Pis(z) − Pj(z)) = n (j 6= is). Thus by (3.1)
and Lemma 2.1, we obtain σ(−f (k)) = n and this is a contradiction. Hence every
transcendental meromorphic solution f of equation (1.2) is of order σ(f) ≥ n.

Assume f is a transcendental meromorphic solution whose poles are of uniformly
bounded multiplicity of equation (1.2). By Lemma 2.2, there exist a constant B > 0
and a set E1 ⊂ [1,+∞) having finite logarithmic measure such that for all z satisfying
|z| = r /∈ [0, 1] ∪ E1, we have (3.2). By (1.2), it follows that the poles of f can only
occur at the poles of hj(z) (j = 0, . . . , k− 1). Note that the poles of f are of uniformly
bounded multiplicity. Hence

λ(1/f) ≤ max {σ(hj) : j = 0, . . . , k − 1} < n.

By the Hadamard factorization theorem, we know that f can be written as f(z) = g(z)
d(z) ,

where g(z) and d(z) are entire functions with

λ(d) = σ(d) = λ(1/f) < n ≤ σ(f) = σ(g).

For each sufficiently large |z| = r, let zr = reiθr be a point satisfying |g(zr)| = M(r, g).
By Lemma 2.6, there exist a constant δr (> 0), a sequence {rm}m∈N , rm → +∞ and
a set E5 of finite logarithmic measure such that the estimation (3.3) holds for all z
satisfying |z| = rm /∈ E5, rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr]. Set

H4 =
k−1⋃

j=0
{θ ∈ [0, 2π) : δ(Pj , θ) = 0}

and
H5 =

⋃

1≤s<d≤m
{θ ∈ [0, 2π) : δ(Pis , θ) = δ(Pid , θ)} .

For any given θ ∈ [θr− δr, θr + δr] \ (H4 ∪H5), we have δ(Pj , θ) 6= 0 (j = 0, . . . , k − 1),
δ(Pis , θ) 6= δ(Pid , θ) (1 ≤ s < d ≤ m). Since an,ij (j = 1, . . . ,m) are distinct complex
numbers, then there exists only one t ∈ {1, . . . ,m} such that

δt = δ(Pit , θ) = max
{
δ(Pij , θ) : j = 1, . . . ,m

}
.

For any given θ ∈ [θr − δr, θr + δr] \ (H4 ∪H5), we have

δ(Pit , θ) > 0 or δ(Pit , θ) < 0.

Case 1. δt > 0. For l ∈ {0, . . . , k − 1} \ {i1, . . . , im} , we have

an,l = c
(it)
n,l an,it or an,l = c

(ij)
n,l an,ij (j 6= t).
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Hence for l ∈ {0, . . . , k − 1} \ {i1, . . . , im} , we have δ(Pl, θ) < δt. Set δ =
max {δ(Pj , θ) : j 6= it} . Thus δ < δt.

Subcase 1.1. δ > 0. Thus by Lemma 2.7, for any given ε (0 < 2ε < δt−δ
δt+δ ), there exists

a set E6 ⊂ (1,+∞) having finite logarithmic measure such that for all z satisfying
|z| = r /∈ [0, 1] ∪ E6, r → +∞ and arg z = θ ∈ [θr − δr, θr + δr] \ (H4 ∪H5), we have

∣∣∣hit(z)ePit (z)
∣∣∣ ≥ exp{(1− ε)δitrn} (5.1)

and ∣∣∣hj(z)ePj(z)
∣∣∣ ≤ exp{(1 + ε)δrn} (j 6= it). (5.2)

We can rewrite (1.2) as

hit(z)ePit (z) = f (k)

f (it) + hk−1(z)ePk−1(z) f
(k−1)

f (it)

+ hit+1(z)ePit+1(z) f
(it+1)

f (it) + hit−1(z)ePit−1(z) f
(it−1)

f

f

f (it)

+ . . .+ h1(z)eP1(z) f
′

f

f

f (it) + h0(z)eP0(z) f

f (it) .

(5.3)

Substituting (3.2), (3.3), (5.1) and (5.2) into (5.3), for all z satisfying |z| = rm /∈
[0, 1]∪E1∪E5∪E6, rm → +∞ and arg z = θ ∈ [θr− δr, θr + δr]\ (H4∪H5), we obtain

exp{(1− ε)δitrnm} ≤M1r
2it
m exp {(1 + ε)δrnm} [T (2rm, f)]k+1, (5.4)

where M1(> 0) is a constant. Hence by using Lemma 2.8 and (5.4), we obtain
σ(f) = +∞ and σ2(f) ≥ n. From this and Lemma 2.9, we have σ2(f) = n.

Subcase 1.2. δ < 0. By Lemma 2.7, for any given ε (0 < 2ε < 1), there exists
a set E6 ⊂ [0, 2π) having finite logarithmic measure such that for all z satisfying
|z| = r /∈ [0, 1] ∪ E6, r → +∞ and arg z = θ ∈ [θr − δr, θr + δr] \ (H4 ∪H5), we have
(5.1) and ∣∣∣hj(z)ePj(z)

∣∣∣ ≤ exp{(1− ε)δ(Pj , θ)rn} < 1 (j 6= it). (5.5)

Substituting (3.2),(3.3), (5.1) and (5.5) into (3.6), for all z satisfying |z| = rm /∈
[0, 1]∪E1∪E5∪E6, rm → +∞ and arg z = θ ∈ [θr− δr, θr + δr]\ (H4∪H5), we obtain

exp {(1− ε)δitrnm} ≤M2r
2it
m [T (2rm, f)]k+1, (5.6)

where M2 (> 0) is a constant. Hence by using Lemma 2.8 and (5.6), we obtain
σ(f) = +∞ and σ2(f) ≥ n. From this and Lemma 2.9, we have σ2(f) = n.

Case 2. δit < 0. Set

c = min
{
c

(ij)
n,l : l ∈ {0, . . . , k − 1}� {i1, . . . , im} and j = (1, . . . ,m)

}
.
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By Lemma 2.7, for any given ε (0 < 2ε < 1), there exists a set E6 ⊂ (1,+∞) having
finite logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E6, r → +∞
and arg z = θ ∈ [θr − δr, θr + δr] \ (H4 ∪H5), we have

∣∣∣hj(z)ePj(z)
∣∣∣ ≤ exp{(1− ε)cδitrn} (j = 0, . . . , k − 1). (5.7)

Substituting (3.2), (3.3) and (5.7) into (3.10), for all z satisfying |z| = rm /∈ [0, 1] ∪
E1 ∪ E5 ∪ E6, rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr] \ (H4 ∪H5), we obtain

1 ≤M3r
2k
m exp {(1− ε)cδitrnm} [T (2rm, f)]k+1, (5.8)

where M3 (> 0) is a constant. Hence by using Lemma 2.8 and (5.8), we obtain
σ(f) = +∞ and σ2(f) ≥ n. From this and Lemma 2.9, we have σ2(f) = n.

6. PROOF OF THEOREM 1.12

First, we show that (1.4) can possess at most one exceptional transcendental meromor-
phic solution f0 of finite order. In fact, if f∗ is another transcendental meromorphic
solution of finite order of equation (1.3), then f0 − f∗ is of finite order. But f0 − f∗ is
a transcendental meromorphic solution of the corresponding homogeneous equation of
(1.4). This contradicts Theorem 1.8, Theorem 1.10 and Theorem 1.11. We assume that f
is an infinite order meromorphic solution of (1.4) whose poles are of uniformly bounded
multiplicity. By Lemma 2.13 and Lemma 2.14, we have λ2(f) = λ2(f) = σ2(f) ≤ n.

Now we prove that σ2(f) ≥ n. By Lemma 2.2, there exist a constant B > 0 and
a set E1 ⊂ [1,+∞) having finite logarithmic measure such that for all z satisfying
|z| = r /∈ [0, 1] ∪ E1, we have (3.2). Set

σ = max {σ(F ), σ(hj) : j = 0, . . . , k − 1} .

By (1.4), it follows that the poles of f can only occur at the poles of hj(z) (j =
0, . . . , k − 1) and F . Note that the poles of f are of uniformly bounded multiplicity.
Hence λ(1/f) ≤ σ. By the Hadamard factorization theorem, we know that f can be
written as f(z) = g(z)

d(z) , where g(z) and d(z) are entire functions with

λ(d) = σ(d) = λ(1/f) ≤ σ < σ(f) = σ(g) = +∞.

For each sufficiently large |z| = r, let zr = reiθr be a point satisfying |g(zr)| = M(r, g).
By Lemma 2.6, there exist a constant δr (> 0), a sequence {rm}m∈N , rm → +∞ and
a set E5 of finite logarithmic measure such that the estimation (3.3) holds for all z
satisfying |z| = rm /∈ E5, rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr]. Since |g(z)| is
continuous in |z| = r, then there exists a constant λr(> 0) such that for all z satisfying
|z| = r sufficiently large and arg z = θ ∈ [θr − λr, θr + λr], we have

1
2 |g(zr)| < |g(z)| < 3

2 |g(zr)| . (6.1)
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On the other hand, by Lemma 2.11, for a given ε (0 < ε < n− σ), there exists a set
E9 ⊂ (1,+∞) that has finite logarithmic measure such that

|F (z)| ≤ exp
{
rσ+ε} and |d(z)| ≤ exp

{
rσ+ε} (6.2)

hold for |z| = r /∈ [0, 1] ∪ E9, r → +∞. Since M(r, g) ≥ 1 for sufficiently large r, it
follows from (6.2) that

∣∣∣∣
F (z)
f(z)

∣∣∣∣ = |F (z)| |d(z)|
|g(z)| = |F (z)| |d(z)|

M(r, g) ≤ exp
{

2rσ+ε} (6.3)

for |z| = r /∈ [0, 1] ∪ E9, r → +∞. Set γ = min {δr, λr}.

(i) Suppose that Pj(z), hj(z) and an,j (j = 0, 1, . . . , k − 1) satisfy hypotheses of
Theorem 1.8. For any given θ ∈ [θr − γ, θr + γ] \H1, where H1 is defined in the proof
of Theorem 1.8, we have

δ(Ps, θ) > 0 or δ(Ps, θ) < 0.

Case 1. δ(Ps, θ) > 0. From (1.4), (3.2)–(3.5) and (6.3), for all z satisfying |z| = rm /∈
[0, 1] ∪ E1 ∪ E5 ∪ E6 ∪ E9, rm → +∞ and arg z = θ ∈ [θr − γ, θr + γ] \H1, we obtain

exp {(1− ε)δ(Ps, θ)rnm}
≤M1r

2s
m exp {(1 + ε)αδ(Ps, θ)rnm} [T (2rm, f)]k+1,

(6.4)

where M1 (> 0) is a constant. From (6.4) and Lemma 2.8, we get σ2(f) ≥ n. This and
the fact that σ2(f) ≤ n yield σ2(f) = n.
Case 2. δ(Ps, θ) < 0. From (1.4), (3.2), (3.3), (3.9), (3.10) and (6.3), for all z satisfying
|z| = rm /∈ [0, 1] ∪E1 ∪E5 ∪E6 ∪E9, rm → +∞ and arg z = θ ∈ [θr − γ, θr + γ] \H1,
we obtain

1 ≤M2r
2k
m exp {(1− ε)βδ(Ps, θ)rnm} [T (2rm, f)]k+1, (6.5)

where M2 (> 0) is a constant. From (6.5) and Lemma 2.8, we get σ2(f) ≥ n. This and
the fact that σ2(f) ≤ n yield σ2(f) = n.

(ii) Suppose that Pj(z), hj(z) and an,j (j = 0, 1, . . . , k − 1) satisfy the hypotheses
of Theorem 1.10. For any given θ ∈ [θr − γ, θr + γ] \ (H2 ∪H3), we have

δ(Ps, θ) 6= 0, δ(Pd, θ) 6= 0 and δ(Ps, θ) > δ(Pd, θ) or δ(Ps, θ) < δ(Pd, θ),

where H2 and H3 are defined in the proof of Theorem 1.10. Set δ1 = δ(Ps, θ) and
δ2 = δ(Pd, θ).
Case 1. δ1 > δ2. Here we also divide our proof in three subcases:
Subcase 1.1. δ1 > δ2 > 0. From (1.4), (3.2), (3.3), (4.1), (4.2) and (6.3), for all
z satisfying |z| = rm /∈ [0, 1] ∪ E1 ∪ E5 ∪ E6 ∪ E9, rm → +∞ and arg z = θ ∈
[θr − γ, θr + γ] \ (H2 ∪H3), we obtain

exp{(1− ε)δ1r
n
m} ≤M3r

2s
m exp {(1 + ε)δ3r

n
m} [T (2rm, f)]k+1, (6.6)
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where M3(> 0) is a constant. From (6.6) and Lemma 2.8, we get σ2(f) ≥ n. This and
the fact that σ2(f) ≤ n yield σ2(f) = n.
Subcase 1.2. δ1 > 0 > δ2. From (1.4), (3.2), (3.3), (4.1), (4.4) and (6.3), for all
z satisfying |z| = rm /∈ [0, 1] ∪ E1 ∪ E5 ∪ E6 ∪ E9, rm → +∞ and arg z = θ ∈
[θr − γ, θr + γ] \ (H2 ∪H3), we obtain

exp {(1− ε)δ1r
n
m} ≤M4r

2s
m exp {(1 + ε)γδ1r

n
m} [T (2rm, f)]k+1, (6.7)

where M4 (> 0) is a constant. From (6.7) and Lemma 2.8, we get σ2(f) ≥ n. This and
the fact that σ2(f) ≤ n yield σ2(f) = n.
Subcase 1.3. 0 > δ1 > δ2. From (1.4), (3.2), (3.3), (3.9), (4.6) and (6.3), for all
z satisfying |z| = rm ∈ [0, 1] ∪ E1 ∪ E5 ∪ E6 ∪ E9, rm → +∞ and arg z = θ ∈
[θr − γ, θr + γ] \ (H2 ∪H3), we obtain

1 ≤M5r
2k
m exp {(1− ε)λδ1r

n
m}T (2rm, f)k+1, (6.8)

where M3 (> 0) is a constant. From (6.8) and Lemma 2.8, we get σ2(f) ≥ n. This and
the fact that σ2(f) ≤ n yield σ2(f) = n.
Case 2. δ1 < δ2. Using the same reasoning as in Case 1, we can also obtain σ2(f) ≥ n.
This and the fact that σ2(f) ≤ n yield σ2(f) = n.

(iii) Suppose that Pj(z), hj(z) and an,j (j = 0, 1, . . . , k − 1) satisfy the hypotheses
of Theorem 1.11. For any given θ ∈ [θr − γ, θr + γ] \ (H4 ∪H5), we have

δt = δ(Pit , θ) > 0 or δ(Pit , θ) < 0,

where H4, H5 and δt are defined in the proof of Theorem 1.11.
Case 1. δt > 0.
Subcase 1.1. δ > 0, where δ = max {δ(Pj , θ) : j 6= it} . From (1.4), (3.2), (3.3), (5.1),
(5.2) and (6.3), for all z satisfying |z| = rm /∈ [0, 1] ∪ E1 ∪ E5 ∪ E6 ∪ E9, rm → +∞
and arg z = θ ∈ [θr − γ, θr + γ] \ (H4 ∪H5), we obtain

exp{(1− ε)δitrnm} ≤M6r
2it
m exp {(1 + ε)αrnm} [T (2rm, f)]k+1, (6.9)

where M6(> 0) is a constant. From (6.9) and Lemma 2.8, we get σ2(f) ≥ n. This and
the fact that σ2(f) ≤ n yield σ2(f) = n.
Subcase 1.2 δ < 0. From (1.4) ,(3.2),(3.3), (5.1), (5.5) and (6.3), for all z satisfying
|z| = rm /∈ [0, 1]∪E1∪E5∪E6∪E9, rm → +∞ and arg z = θ ∈ [θr−γ, θr+γ]\(H4∪H5),
we obtain

exp {(1− ε)δitrnm} ≤M7r
2it
m [T (2rm, f)]k+1, (6.10)

where M7(> 0) is a constant. From (6.10) and Lemma 2.8, we get σ2(f) ≥ n. This
and the fact that σ2(f) ≤ n yield σ2(f) = n.
Case 2. δit < 0. From (1.4), (3.2), (3.3), (5.7) and (6.3), for all z satisfying |z| = rm /∈
[0, 1] ∪ E1 ∪ E5 ∪ E6 ∪ E9, rm → +∞ and arg z = θ ∈ [θr − γ, θr + γ] \ (H4 ∪H5), we
obtain

1 ≤M8r
2k
m exp {(1− ε)cδitrnm} [T (2rm, f)]k+1, (6.11)
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where M8 (> 0) is a constant. From (6.11) and Lemma 2.8, we get σ2(f) ≥ n. This
and the fact that σ2(f) ≤ n yield σ2(f) = n.
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