PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Primary stenosis progression versus secondary stenosis formation in the left coronary bifurcation: A mechanical point of view

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biomechanical forces and hemodynamic factors influence the blood flow and the endothelial cells (ECs) morphology. These factors behave differently beyond the coronary artery stenosis. In the present study, unsteady blood flow in the left coronary artery (LCA) and its atherosclerotic bifurcating vessels, left anterior descending (LAD) and left circumflex (LCX) arteries, were numerically simulated to investigate the risk of plaque length development and secondary plaque formation in the post-stenotic areas. Using fluid–structure interaction (FSI) model, compliance of arterial wall and vessel curvature variations due to cardiac motion were considered. The arteries included plaques at the beginning of the bifurcation. Stenosis degree varied from 40% to 70% based on diameter reduction. Healthy coronary artery was also reconstructed to compare with the atherosclerotic arteries. Circumferential and longitudinal strains of ECs as well as wall shear stress (WSS) were computed in different locations downstream of the stenosis. It was concluded that the most critical regions experiencing low circumferential strain and low WSS were located proximal to the plaque throat, and the effects of these parameters intensified by stenosis degree. The results proposed that primary plaque length progression is more probable than secondary plaque formation distal to the stenosis when the stenosis degree increases.
Twórcy
autor
  • Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
  • School of Mechanical Engineering, Shiraz University, Shiraz, Iran
  • Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
  • Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
Bibliografia
  • [1] Waite L, Fine JM. Applied biofluid mechanics; 2007.
  • [2] Ding Z, Friedman MH. Quantification of 3-D coronary arterial motion using clinical biplane cineangiograms. Int J Card Imaging 2000;16:331–46.
  • [3] Knight J, Olgac U, Saur SC, Poulikakos D, Marshall W, Cattin PC, et al. Choosing the optimal wall shear parameter for the prediction of plaque location—a patient-specific computational study in human right coronary arteries. Atherosclerosis 2010;211:445–50.
  • [4] Rikhtegar F, Knight JA, Olgac U, Saur SC, Poulikakos D, Marshall W, et al. Choosing the optimal wall shear parameter for the prediction of plaque location—a patient-specific computational study in human left coronary arteries. Atherosclerosis 2012;221:432–7.
  • [5] Ohashi T, Sato M. Remodeling of vascular endothelial cells exposed to fluid shear stress: experimental and numerical approach. Fluid Dyn Res 2005;37:40–59.
  • [6] Kang J, Steward RL, Kim Y, Schwartz RS, LeDuc PR, Puskar KM. Response of an actin filament network model under cyclic stretching through a coarse grained Monte Carlo approach. J Theor Biol 2011;274:109–19.
  • [7] Pakravan MSSHA, Firoozabadi B. A mechanical model for morphological response of endothelial cells under combined wall shear stress and cyclic stretch loadings. Biomech Model Mechanobiol 2016;15:1229–43.
  • [8] Sipkema P, van der Linden PJ, Westerhof N, Yin FC. Effect of cyclic axial stretch of rat arteries on endothelial cytoskeletal morphology and vascular reactivity. J Biomech 2003;36:653–9.
  • [9] Andersson HI, Halden R, Glomsaker T. Effects of surface irregularities on flow resistance in differently shaped arterial stenoses. J Biomech 2000;33:1257–62.
  • [10] Valencia A, Baeza F. Numerical simulation of fluid– structure interaction in stenotic arteries considering two layer nonlinear anisotropic structural model. Int Commun Heat Mass Transf 2009;36:137–42.
  • [11] Girasis C, Serruys PW, Onuma Y, Colombo A, Holmes DR, Feldman TE, et al. 3-Dimensional bifurcation angle analysis in patients with left main disease: a substudy of the SYNTAX trial (SYNergy Between Percutaneous Coronary Intervention with TAXus and Cardiac Surgery). JACC Cardiovasc Interv 2010;3:41–8.
  • [12] Juan Y-H, Tsay P-K, Shen W-C, Yeh C-S, Wen M-S, Wan Y-L. Comparison of the left main coronary bifurcating angle among patients with normal, non-significantly and significantly stenosed left coronary arteries. Sci Rep 2017;7:1515.
  • [13] Pflederer T, Ludwig J, Ropers D, Daniel WG, Achenbach S. Measurement of coronary artery bifurcation angles by multidetector computed tomography. Investig Radiol 2006;41:793–8.
  • [14] Kratky RG, Roach MR. Relationship between aortic endothelial cell morphology and atherosclerosis in rabbits. Scan Electron Microsc 1983;1461–6.
  • [15] Dodge J, Brown BG, Bolson EL, Dodge HT. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 1992;86:232–46.
  • [16] Craiem D, Casciaro ME, Graf S, Glaser CE, Gurfinkel EP, Armentano RL. Coronary arteries simplified with 3D cylinders to assess true bifurcation angles in atherosclerotic patients. Cardiovasc Eng 2009;9:127–33.
  • [17] Malvè M, Garcia A, Ohayon J, Martinez M. Unsteady blood flow and mass transfer of a human left coronary artery bifurcation: FSI vs. CFD. Int Commun Heat Mass Transf 2012;39:745–51.
  • [18] Ramaswamy S, Vigmostad S, Wahle A, Lai Y-G, Olszewski M, Braddy K, et al. Fluid dynamic analysis in a human left anterior descending coronary artery with arterial motion. Ann Biomed Eng 2004;32:1628–41.
  • [19] Tang D, Yang C, Kobayashi S, Zheng J, Woodard PK, Teng Z, et al. 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J Biomech Eng 2009;131:061010.
  • [20] Gradus-Pizlo I, Bigelow B, Mahomed Y, Sawada SG, Rieger K, Feigenbaum H. Left anterior descending coronary artery wall thickness measured by high-frequency transthoracic and epicardial echocardiography includes adventitia. Am J Cardiol 2003;91:27–32.
  • [21] Topol EJ, Teirstein PS. Textbook of interventional cardiology. Elsevier Health Sciences; 2011.
  • [22] Pakravan HA, Saidi MS, Firoozabadi B. FSI simulation of a healthy coronary bifurcation for studying the mechanical stimuli of endothelial cells under different physiological conditions. J Mech Med Biol 2015;1550089.
  • [23] Enrico B, Suranyi P, Thilo C, Bonomo L, Costello P, Schoepf UJ. Coronary artery plaque formation at coronary CT angiography: morphological analysis and relationship to hemodynamics. Eur Radiol 2009;19:837–44.
  • [24] Prosi M, Perktold K, Ding Z, Friedman MH. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J Biomech 2004;37:1767–75.
  • [25] Weydahl ES, Moore JE. Dynamic curvature strongly affects wall shear rates in a coronary artery bifurcation model. J Biomech 2001;34:1189–96.
  • [26] Pivkin I, Richardson P, Laidlaw D, Karniadakis G. Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model. J Biomech 2005;38:1283–90.
  • [27] Stamenović D, Lazopoulos KA, Pirentis A, Suki B. Mechanical stability determines stress fiber and focal adhesion orientation. Cell Mol Bioeng 2009;2:475–85.
  • [28] Solovchuk MA, Sheu TW, Thiriet M, Lin W-L. Effect of acoustic streaming on tissue heating due to high-intensity focused ultrasound; 2011, arXiv:1111.2908.
  • [29] Torii R, Wood NB, Hadjiloizou N, Dowsey AW, Wright AR, Hughes AD, et al. Fluid–structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun Numer Methods Eng 2009;25:565–80.
  • [30] Solovchuk MA, Sheu TW, Thiriet M. Image-based computational model for focused ultrasound ablation of liver tumor. J Comput Surg 2014;1:1–13.
  • [31] Valencia A, Villanueva M. Unsteady flow and mass transfer in models of stenotic arteries considering fluid–structure interaction. Int Commun Heat Mass Transf 2006;33:966–75.
  • [32] Kabinejadian F, Ghista DN. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution. Med Eng Phys 2012;34:860–72.
  • [33] Wang X, Li X. Biomechanical behaviors of curved artery with flexible wall: a numerical study using fluid–structure interaction method. Comput Biol Med 2011;41:1014–21.
  • [34] Janela J, Moura A, Sequeira A. A 3D non-Newtonian fluid– structure interaction model for blood flow in arteries. J Comput Appl Math 2010;234:2783–91.
  • [35] Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado- Sierra J, Willson K, et al. Evidence of a dominant backward-propagating ‘‘suction’’ wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 2006;113:1768–78.
  • [36] Liu Y, Lai Y, Nagaraj A, Kane B, Hamilton A, Greene R, et al. Pulsatile flow simulation in arterial vascular segments with intravascular ultrasound images. Med Eng Phys 2001;23:583–95.
  • [37] Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974;33:87–94.
  • [38] Kim H, Vignon-Clementel I, Coogan J, Figueroa C, Jansen K, Taylor C. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 2010;38:3195–209.
  • [39] Nichols W, O'Rourke M, Vlachopoulos C. McDonald's blood flow in arteries: theoretical, experimental and clinical principles. CRC Press; 2011.
  • [40] Mann DL, Zipes DP, Libby P, Bonow RO. Braunwald's heart disease: a textbook of cardiovascular medicine. Elsevier Health Sciences; 2014.
  • [41] Yamada H, Takemasa T, Yamaguchi T. Theoretical study of intracellular stress fiber orientation under cyclic deformation. J Biomech 2000;33:1501–5.
  • [42] Fox B, James K, Morgan B, Seed A. Distribution of fatty and fibrous plaques in young human coronary arteries. Atherosclerosis 1982;41:337–47.
  • [43] Liu Y-C, Sun Z, Tsay P-K, Chan T, Hsieh I, Chen C-C, et al. Significance of coronary calcification for prediction of coronary artery disease and cardiac events based on 64-slice coronary computed tomography angiography. BioMed Res Int 2013;2013.
  • [44] Haberl R, Becker A, Leber A, Knez A, Becker C, Lang C, et al. Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1764 patients. J Am Coll Cardiol 2001;37:451–7.
  • [45] Kajinami K, Seki H, Takekoshi N, Mabuchi H. Coronary calcification and coronary atherosclerosis: site by site comparative morphologic study of electron beam computed tomography and coronary angiography. J Am Coll Cardiol 1997;29:1549–56.
  • [46] Holzapfel GA, Sommer G, Regitnig P. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J Biomech Eng 2004;126:657–65.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6d7fa92-488c-4cb5-957a-2382d902b380
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.