PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Microstructure and mechanical behaviour of in situ fabricated AA6061–TiC metal matrix composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
AA6061–TiC composites were developed by in situ reaction of molten AA6061 alloy with potassium hexafluorotitanate salt and pure graphite at a temperature of 900 °C. The in situ composites were subjected to hot forging at 500 °C and uniform strain rate of 0.0115 mm s−1 with degree of deformation of 65%. Both cast and forged in situ composites were subjected to grain size analysis and scanning electron microscopy studies to study the dispersion of TiC particles. Mechanical properties like Brinell hardness and tensile properties were evaluated to measure the effect of TiC particles on the AA6061 matrix. Microstructure of forged composites revealed uniform dispersion of TiC particles without forming any lumps at any particular regions. Brinell hardness and tensile strength of cast and forged in situ composites increased with increasing TiC particle content. The improved mechanical properties were attributed to good dispersion of TiC particles, grain refinement of the matrix and dislocation strengthening. Every fracture developed in cast ones was due to inter-dendritic cracking while in the case of forged ones it had mixed mode of fracture with dominating ductile nature.
Rocznik
Strony
535--544
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Department of Automobile Engineering, Dayananda Sagar College of Engineering, Bangalore 560078, India
autor
  • Department of Automobile Engineering, Dayananda Sagar College of Engineering, Bangalore 560078, India
  • Department of Mechanical Engineering, Dayananda Sagar College of Engineering, Bangalore 560078, India
autor
  • Faculty of Materials Science and Engineering, Khaje Nasir Toosi University of Technology, Tehran, Iran
  • Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
Bibliografia
  • [1] F.A. Girot, J.M. Quenisset, R. Naslain, Discontinuously- reinforced aluminum matrix composites, Composites Science and Technology 30 (1987) 155–184.
  • [2] M.K. Surappa, Aluminium matrix composites: challenges and opportunities, Sadhana 28 (2003) 319–334.
  • [3] H. Nakata, T. Choh, N. Kanetake, Fabrication and mechanical properties of in situ formed carbide particulate reinforced aluminium composite, Journal of Materials Science 30 (1995) 1719–1727.
  • [4] S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Materials Science and Engineering R 29 (2000) 49–113.
  • [5] G.S.P. Kumar, R. Keshavamurthy, C.S. Ramesh, B.H. Channabasappa, Tribological characteristics of Al6061–TiC composite synthesized by in situ technique, Applied Mechanics and Materials 787 (2015) 653–657.
  • [6] M.R. Rahul, R. Keshavamurthy, P.G. Koppad, C.P.S. Prakash, Mechanical characteristics of copper–TiB2 composite synthesized by in-situ reaction, International Journal of Applied Engineering Research 10 (2015) 3803–3806.
  • [7] P. Li, E.G. Kandalova, V.I. Nikitin, In situ synthesis of Al–TiC in aluminum melt, Materials Letters 59 (2005) 2545–2548.
  • [8] R.F. Shyu, C.T. Ho, In situ reacted titanium carbide-reinforced aluminum alloys composite, Journal of Materials Processing Technology 171 (2006) 411–416.
  • [9] C.S. Ramesh, A. Ahamed, B.H. Channabasappa, R. Keshavamurthy, Development of Al6063–TiB2 in situ composites, Materials and Design 31 (2010) 2230–2236.
  • [10] C.S. Ramesh, S. Pramod, R. Keshavamurthy, A study on microstructure and mechanical properties of Al6061–TiB2 in-situ composites, Materials Science and Engineering A 528 (2011) 4125–4132.
  • [11] L.M. Liu, S.Q. Wang, H.Q. Ye, Adhesion and bonding of the Al/ TiC interface, Surface Science 550 (2004) 46–56.
  • [12] G.S. Vinod Kumar, B.S. Murty, M. Chakraborty, Development of Al–Ti–C grain refiners and study of their efficiency on Al and Al–7Si alloy, Journal of Alloys and Compounds 396 (2005) 143–150.
  • [13] R.N. Rai, A.K.P. Rao, G.L. Dutta, M. Chakraborty, Forming behaviour of Al–TiC in-situ composites, Materials Science Forum 765 (2013) 418–422.
  • [14] Y. Birol, In situ synthesis of Al–TiCp composites by reacting K2TiF6 and particulate graphite in molten aluminium, Journal of Alloys and Compounds 454 (2008) 110–117.
  • [15] R.N. Rai, A.K.P. Rao, G.L. Dutta, M. Chakraborty, Studies on synthesis of in-situ Al–TiC metal matrix composites, IOP Conference Series: Materials Science and Engineering 117 (2016) 012042.
  • [16] A.R. Kennedy, S.M. Wyatt, The effect of processing on the mechanical properties and interfacial strength of aluminium/TiC MMCs, Composites Science and Technology 60 (2000) 307–314.
  • [17] K.T. Kashyap, T. Chandrashekar, Effects and mechanisms of grain refinement in aluminium alloys, Bulletin of Materials Science 24 (2001) 345–353.
  • [18] W.S. Miller, F.J. Humphreys, Strengthening mechanisms in particulate metal matrix composites, Scripta Metallurgica et Materialia 25 (1991) 33–38.
  • [19] P. Sahoo, M.J. Koczak, Microstructure–property relationships of in situ reacted TiC/Al–Cu metal matrix composites, Materials Science and Engineering A 131 (1991) 69–76.
  • [20] C.S. Ramesh, R. Keshavamurthy, S. Pramod, P.G. Koppad, Abrasive wear behavior of Ni–P coated Si3N4 reinforced Al6061 composites, Journal of Materials Processing Technology 211 (2011) 1423–1431.
  • [21] A. Thangarasu, N. Murugan, I. Dinaharan, S.J. Vijay, Synthesis and characterization of titanium carbide particulate reinforced AA6082 aluminium alloy composites via friction stir processing, Archives of Civil and Mechanical Engineering 15 (2015) 324–334.
  • [22] C.T. Kim, J.K. Lee, M.R. Plichta, Plastic relaxation of thermoelastic stress in aluminum/ceramic composites, Metallurgical Transactions A 21 (1990) 673–682.
  • [23] A.R. Kennedy, A.E. Karantzalis, S.M. Wyatt, The microstructure and mechanical properties of TiC and TiB2- reinforced cast metal matrix Composites, Journal of Materials Science 34 (1999) 933–940.
  • [24] M. Ma, R. Liu, H. Zhao, Y. Yu, In-situ TiCp/Al composites prepared by TE/QP method, Journal of Materials Science Technology 21 (2005) 652–656.
  • [25] B. Yang, G. Chen, J. Zhang, Effect of Ti/C additions on the formation of Al3Ti of in situ TiC/Al composites, Materials and Design 22 (2001) 645–650.
  • [26] I. Kerti, Production of TiC reinforced-aluminum composites with the addition of elemental carbon, Materials Letters 59 (2005) 3795–3800.
  • [27] S. Tahamtan, A.F. Boostani, H. Nazemi, Mechanical properties and fracture behavior of thixoformed, rheocast and gravity-cast A356 alloy, Journal of Alloys and Compounds 468 (2009) 107–114.
  • [28] H. Abdizadeh, M.A. Baghchesara, Investigation on mechanical properties and fracture behaviour of A356 aluminum alloy based ZrO2 particle reinforced metal– matrix composites, Ceramics International 39 (2013) 2045– 2050.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6d5f2b5-fc2f-4c68-9da8-d2b18c526966
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.