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Abstract
The paper deals with the problem of optimal material distribution inside the provided design area. Optimization based on deter-
ministic and stochastic algorithms is used to obtain the best result on the basis of the proposed objective function and constraints. 
The optimization of the shock absorber is used as an example of the described methods. One of the main difficulties addressed is 
the manufacturability of the optimized part intended for the forging process. Additionally, nonlinear buckling simulation with the 
use of the finite element method is used to solve the misuse case of shock absorber compression, where the shape of the optimized 
part has a key role in the total strength of the automotive damper. All of that, together with the required design precision, creates 
the nontrivial constrained optimization problem solved using the parametric, implicit geometry representation and a combination 
of stochastic and deterministic algorithms used with parallel design processing. Two methods of optimization are examined and 
compared in terms of the total amount of function calls, final design mass, and feasibility of the resultant design. Also, the amount 
of parameters used for the implicit geometry representation is greatly reduced compared to existing schemes presented in the liter-
ature. The problem addressed in this article is strongly inspired by the actual industrial example of the mass minimization process, 
but it is more focused on the actual manufacturability of the resultant component and admissible solving time. Commercially 
accessible software combined with authors’ procedures is used to resolve the material distribution task, which makes the proposed 
method universal and easily adapted to other fields of the optimization of mechanical elements.
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1. Introduction

The optimal material distribution over a fixed design area 
is one of the most rapidly developing fields of structural 
mechanics. It aims to allocate material as efficiently as pos-
sible so that the structure can be made at minimum cost 
(weight, area, length, price, etc.), and all the design con-
straints are met, including the manufacturing restrictions 
when appropriate. There are dozens of well-described 
procedures already available in the literature, but they are 
mostly focused on topology optimization problems, while 

some of the manufacturing conditions are not included as 
a  scope of the optimization. Special care must be taken 
when manufacturing-related conditions need to be sat-
isfied. There are works (Li et al., 2015) that present the 
methodology used for extruded designs optimization, for 
optimization when minimum or maximum member size 
is relevant (Zhou et al., 2001), where 3D printed design is 
created as a result of optimization (Ntintakis et al., 2020). 
Examples of the implementation of different manufactur-
ing constraints, guaranteeing the feasibility of the resultant 
design, are described in the works of Vatanabe et al. (2016).
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Nonetheless, all of the above methods are used for 
obtaining the satisfactory shape of the optimized part, 
but methods used to drive the optimization process are 
different among most of the works. Different authors 
use stochastic (Hu et al., 2014) and deterministic algo-
rithms (Wang & Wang, 2006), local and global search 
attitudes, or a  combination of the above (Hongwen 
et al., 2017). The choice of the method is critical not 
only for the efficiency of the optimization (i.e., the final 
shape itself), but also for the number of function calls 
or finding local/global extrema.

The work presented in this paper is related to the 
unstable behavior of automotive shock absorbers when 
subjected to severe compression loadings, such as run-
ning over a curb with high velocity or braking in the pot-
hole. Methods dedicated to solving buckling problems in 
general already exist in the literature (Ferrari & Sigmund, 
2020), but they are rarely convenient or precise enough 
to capture the actual buckling behavior of the considered 
chassis structure. That is why the authors decided to use 
the nonlinear buckling simulations, employing the finite 
element static strength analysis, to solve the problem of 
abuse compression loading. The simulated structural be-
havior is a result of the mutual interaction between the 
loaded bodies, as well as the change of the load redistri-
bution while severe deformations are achieved. 

2. Problem description

The analyzed case concerns the optimization of ma-
terial distribution (shape optimization) of the forged 
component – the bottom bracket, which is a part of the 
automotive shock absorber, as presented in Figure  1. 
The design area, where material can be allocated, is 
a space extracted from the chassis kinematic analysis. 
An example of such geometry is presented in the afore-
mentioned Figure 1 with grey color – however, for the 
Finite Element Method (FEM) modeling convenience, 
this area has been already smoothed in order to ease 
the meshing process and to get rid of the “artificial” 
stress concentrations. However, the mass of the resul-
tant body is still much higher than expected, therefore 
the need for the mass (and shape) optimization arises.

As the brackets structural behavior strongly af-
fects the strain and stress distribution of the neighbor-
ing components (i.e., the tube and the piston rod, etc.), 
the structural response of the whole assembly should 
be used for the optimization of the material allocation. 
The ultimate goal is to achieve the feasible shape of 
the bracket, with the lowest possible mass, which is 
still able to resist the applied compression force with-
out losing stability. 

Fig. 1. The geometry of the analyzed shock absorber. The 
optimized part (the bracket) is marked with grey color and 

a rectangular window

In this case, an additional problem occurs, as the fail-
ure mode is not necessarily located in the bracket itself – 
the tube can also be the weakest link of the structure. By 
“failure mode” it is meant, that some part of the structure 
achieves severe plastic deformation, therefore prevents 
the structure from resisting increasing load magnitude. 
The brackets role is not only to support the tube vertically 
or to allow the shock absorber to be mounted in the chassis 
(i.e., to the swingarm bushing), but also to provide suffi-
cient lateral stiffness to prevent the radial movement of 
the tube axis (or simply bending the tube). The reason for 
that is when the whole structure deflects laterally, the com-
pression load vector is being shifted from the supports, 
creating the bending moment, which in consequence raise 
the stress level in the considered parts, as presented in Fig-
ure 2 – it can be referred to as eccentric compression.

 
Fig. 2. The cross-sectional view of the shock absorber in:  

a) the base state; b) under the misuse compression load

Misalignment

a) b)
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There is a certain load level which the shock ab-
sorber must withstand, and below which the buckling 
behavior is forbidden, as presented schematically in 
Figure 3. Using the maximum resultant reaction force 
as the constrained value, the following optimization 
problem is formulated:

Objective function f: 

f(KV1, KV2, ..., KVN) � ��� dV
V  

minimize
�

(1)

Constraint q: 

g(KV1, KV2, ..., KVN) = FULTIMATE ≥ FLIMIT� (2)

where: KVn – weight assigned to the n-th interpolation 
node, knot value; ρ – material density; V – the volume 
of the part; FULTIMATE – maximum force achieved by 
the shock absorber before losing stability; FLIMIT – re-
quired minimum force below which buckling cannot 
occur.

In order to simulate the structural behavior of the 
considered shock absorber, the finite element method 
was used. The nonlinear, static strength analysis was 
performed in each iteration of the optimization process. 
The design area covered over 75% of all finite elements 
used in the analysis, which (for the second-order tetra-
hedron elements) resulted in almost 200,000 degrees 
of freedom.  

3. Materials and methods

3.1. Optimization methods

The proposed optimization problem is solved using 
a  modified level-set-based method, with radial ba-
sis functions for the auxiliary field interpolation. The 
total number of design parameters is greatly reduced 
compared to the methods available in the literature 
(Guirguis & Aly, 2016) even for much smaller problem 
sizes, but no shape derivatives are calculated (there is 
no sensitivity calculation) during the optimization pro-
cess. Such an attitude is a  result of two different rea-
sons, shape derivatives are based on gradient methods, 
which tend to drive the optimization process to reach 
the local optimum. Additionally, gradient-based meth-
ods need to be initiated from a feasible starting point 
which is not known upfront. Reduced-parameters level 
set method can be used together with stochastic algo-
rithms in which randomness is incorporated. 

The first of the above features is the actual root-
cause why the most popular homogenization or one 
of two similar methods: SIMP – Solid Isotropic Ma-
terial with Penalization (Bendsøe, 1989) or RAMP – 
Rational Approximation of Material Properties (Stolpe 
& Svanberg, 2001) methods were not used to solve the 
problem. During the design modification (using these 
methods), convergence was lost due to sudden structur-
al stability issues. 

Fig. 3. Exemplary load-deflection curves for design meeting the minimum buckling force constraint (blue) and design 
violating this constraint (violet). Forces and displacements are presented as values relative to the maximum used in 

similar applications

Buckling force constraint
NOK

OK
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The second point is associated with one of the main 
difficulties in gradient-based methods, which is the 
determination of a  starting point. In such a  case, the 
randomness of, e.g., evolutionary algorithms helps to 
achieve the feasible solution when it is hard to obtain 
any shape due to implicit geometry representation.  

The resultant shape of the bracket (or any opti-
mized part in general) is a result of the distribution of 
the auxiliary field values. For each of the finite element 
centroid, the auxiliary field value is calculated:

� � �
�
�KVi
i

N

i
1

� ( )|| ||x xi
�

(3)

where: Φ – auxiliary field value, φi – shape function, 
x – finite element centroidal coordinates vector; xi – in-
terpolation knot coordinates vector, N – total number of 
interpolation knots;

and compared with the threshold:

Φ ≥ threshold → material
Φ < threshold → void

(4)

where the shape function is realized by the Gauss-
ian-based radial basis function:

�i de( )|| ||

|| ||

x xi
x xi

� �
� 2

�
(5)

where d is the average distance between the interpola-
tion knots grid.

Therefore the optimization problem may be refor-
mulated as:

f(KV1, KV2, ..., KVN, threshold) � �� �
�

� �dV V
V

i
i

N

 

1 �
(6)

subjected to:

g(KV1, KV2, ..., KVN, threshold) ≥ FLIMIT� (7)

One of the challenges associated with the reduced pa-
rameter level-set method is the sufficient resolution of the 
geometry representation. With an increasing number of 
parameters, the resultant geometry can be better represent-
ed in terms of small features and details, like the smooth-
ness of transitions between neighboring surfaces. At the 
same time, it is much harder to obtain a feasible starting 
point, as the increased number of parameters combina-
tion makes it challenging to create a feasible design with 
a random search (as in the case of the genetic algorithm). 
On the other hand, a lower number of parameters increase 
the convergence rate of the problem and therefore reduces 
the computational cost of the optimization by lowering the 
amount of the objective function calls. The auxiliary field 
interpolation is based on the interpolation knots distribu-
tion presented in Figure 4. The knots allocation presented 
below is based on the cross-sectional area of the bracket 
at the height of the interpolation knots planes, which are 
distributed over the height of the bracket in a semi-regular 
manner. The planes at which knots are located (there are 
five such planes, as presented in Figure 4b) match the in-
clinations and shape of the design area. 

      
Fig. 4. The distribution of the interpolation knots in the first model over the design area: a) XZ view; b) YZ view;  

c) semi-isometric view

a) b) c)
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3.2.  Filtering – the condition of  
manufacturability 

In order to greatly increase the manufacturability of 
the resultant bracket geometry, the filtering routine was 
implemented in the optimization algorithm. The filters 
sequence of actions is following:

	– division of the bracket into regions;
	– application of the incremental cross-sectional aux-

iliary field scanning over the height of the bracket;
	– for each of the given cross-sections, the elements 

on the boundary (considering the forging direc-
tions) with Φ ≥ threshold, are saved into algo-
rithms memory;

	– each void-marked element with Φ < threshold 
laying between the saved elements is filled with 
the material.

A schematic representation of the filter is shown in 
Figure 5, for one random cross-section. The forging di-
rection is aligned with the Y-axis presented in Figure 1.

3.3. Optimization algorithms

In order to solve the complex optimization task, two 
groups of algorithms were used:

	– stochastic algorithms: 
•	 multi-island genetic algorithm (MIGA),
•	 evolution strategy (EVOL),

	– deterministic algorithm:
•	 nonlinear programming by quadratic Lagrang-

ian (NLPQPL).

The version of the MIGA used in the optimiza-
tion is the extension of the classic genetic algorithm 
(Whitley et al., 1999). The improvement was made, as 
(comparing to the initial approach presented by J. Hol-
land back in 1975) the MIGA consists of several inde-
pendent islands at which autonomous (random) popu-
lations are created at the first stage of the algorithm. 

The rest of the operators are the same as in the classic 
approach (crossover, mutation, elitism) with one dis-
tinction – additional migration occurs every nmigr_MIGA 
generation with the probability pmigr_MIGA. In such a case, 
the evolution process is not dominated by the particular 
best-fitted individual from initial generations, and more 
diversity is employed.

The second biology-inspired algorithm is evolu-
tion strategy (EVOL) inspired by the works of Rech-
elnberg, and Beyer and Schwefel (2002), even though 
Fogel is considered as the father of evolutionary meth-
ods in general. What makes it different from the classi-
cal genetic algorithm is the fact, that each offspring is 
generated only by mutation, and each generation con-
sists of only one offspring. The mutation is controlled 
by a randomly added value, chosen according to Gauss-
ian normal distribution. The process is self-adaptive, as 
the range of mutation is modified based on the fitness 
function of the m previous mutants (offsprings).

On the other hand, the gradient-based method called 
“nonlinear programming by quadratic Lagrangian” 
represents the group of deterministic algorithms. This 
method is a quasi-Newton version of gradient algorithm, 
which uses the BFGS method to update the Hessian of 
the Lagrange function and linear approximation of output 
constraints (Shittkowski, 1986; Shittkowski et al., 1994). 
Gradients are calculated by the forward or backward dif-
ference method, and for each iteration, more than one 
gradient point might be used for each of the design vari-
ables, which is particularly useful at the first iteration of 
the algorithm (due to the quadratic nature of the approx-
imation of Lagrange function).

The algorithms listed above were chosen based on 
their advantages, i.e., randomness incorporated in biolo-
gy-inspired algorithms and capability of finding the true 
optimum associated with the gradient-based algorithms. 
As the determination of starting point is a critical part 
of the gradient search, the NLPQPL method was start-
ed from the feasible point obtained during the MIGA 
operation, creating the hybrid optimization method 
(Burczyński & Orantek, 1999; Burczyński et al., 2020). 

    
Fig. 5. The schematic representation of the material filtering. The cross-sectional view of the part:  

a) after the optimization iteration; b) after applying the manufacturability filter 
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Additionally, the combination of the algorithms 
described above was introduced into the optimization 
flow. The hybrid attitude consisted of subsequent op-
timization scenarios, where each scenario is started 
from the best individual obtained from the previous 
task. Only the genetic algorithm is using random 
search to obtain the first generation. The schematic 
representation of such an algorithm is presented in 
Figure 6.

Fig. 6. The hybrid optimization flow

4. Results

An optimization process was conducted for the whole 
shock absorber model (system-based approach), and 
the maximum achieved force at the maximum load 
capacity was recorded in each of the design iterations. 
The first model consisted of 28 design parameters, from 
which 27 controlled the auxiliary field (by changing the 

weights assigned to the interpolation knots) and one 
parameter was controlling the threshold directly. The 
analysis of results for the first model, without the fil-
tering routine implemented, was started from the first 
MIGA generation. It was observed, that there were 
many (over 50%) designs that were not meeting the 
limit force constraint, from which almost 15% were 
not even feasible designs at all (i.e. those designs were 
internally unconnected). Such a situation is presented 
in Figure 7 below. It is critical for the brackets function-
ality, to have both sides connected via the bolt connec-
tion. Any design that does not meet this requirement, or 
violates the manufacturability conditions, is assumed 
as infeasible.

Even though the first generation consisted of 
many infeasible individuals, the total amount of such 
design points were almost entirely eliminated through 
the evolution process, due to the strong penalization 
of severely unfitted individuals. On the other hand, 
after the first generation, the number of designs vio-
lating the limit force constraint was lowered at the be-
ginning stage of the MIGA. Starting from the 4th gen-
eration, the occurrence frequency of the weak designs 
started to grow, as many designs oscillated around the 
required limit load. The change of both indicators is 
presented in Figure 8. 

               
Fig. 7. Two extreme representants of the MIGA first generation: a) unconnected design; b) feasible design fulfilling the buckling 

force constraint

a) b)
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Fig. 8. The participation factors [%] of infeasible designs (black) and designs violating 
 the buckling force constraint (brown) over the MIGA generations

Fig. 9. The objective function as a function of MIGA generations

The objective function convergence plot of the 
MIGA optimization is shown in Figure 9. A major mass 
decrease is realized after the first generation due to ran-
dom search. In the subsequent generations, over 65% of 
the initial mass is eliminated from the model. However, 
the objective function was changed by less than 0.5% 
from 11th to the last, 16th generation. The final best-fit-
ted individual had the resultant mass of 0.33 (where 1.0 
mass is equivalent to the whole design area). Neverthe-
less, poor connectivity was observed, making the design 
moderately useful for the forging process (Fig. 10). 

In order to increase the quality of the optimization 
result, a second optimization attempt was initiated us-
ing a gradient-based search. As the determination of the 
starting point is critical for such a group of algorithms, 
one of the mid-generation feasible solutions from the 
MIGA process was used. Even though the resultant 
bracket geometry is similar to the one obtained in the 
MIGA, the new design is free from the connectivity 
issues observed in the first optimization attempt. The 
shape of the initial and the last iterations are presented 
in Figure 11.
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Fig. 10. The best-fitted individual from the MIGA last 
generation

                       

Fig. 11. The shape of the bracket for: a) initial (starting point); 
b) the last iteration of the NLPQLP algorithm

The evolution of the brackets mass as a function of 
gradient-based NLPQLP optimization iteration is shown 
in Figure 12. In total, the process consisted of 35 itera-
tions, however, there were only minor objective function 
improvements after the 20th iteration. The resultant mass 
of the part is 0.39, comparing to 0.33 obtained from the 

MIGA optimization. On the other hand, the increase in 
the feasibility was noticed, even though the mass reduc-
tion potential is still observed (unstressed regions).

Due to the manufacturability issues of the first 
model, the second optimization strategy was started 
with some modifications implemented. First of all, the 
quantity (and therefore location) of interpolation knots 
was increased, to achieve a  better geometrical repre-
sentation of the FEM model, as presented in Figure 13.

Secondly, the number of generations in the MIGA 
decreased from 16 to 10, and the number of individuals 
per island from 12 to 10. The number of islands was 
held constant (10). As a  result, the optimization flow 
changed, making it possible to involve one additional 
biology-inspired algorithm – EVOL. It was used as the 
middle stage of the optimization process, after which 
the gradient-based search was initiated. 

The reason for implementing the additional algo-
rithm was that the distributed genetic algorithm (MIGA) 
works well for highly nonlinear and design spaces, but 
it tends to produce only a  few individuals around the 
optimal point. The evolution strategy (EVOL) is able 
to search the neighborhood of the so-far the best in-
dividual, without converging into local minima as the 
gradient-based algorithms do. Since the intensity of 
the mutation is adjusted to the change in the objective 
function, EVOL may find an alternative optimal point, 
which is no longer associated with the previously found 
“best so far” point. The gradient-based optimization 
(NLPQLP) is able to converge to the actual optima (re-
gardless of local or global case), without a noise gener-
ated by randomly-added variations (like mutation). The 
effect of such combined (hybrid) optimization is shown 
on the convergence plot in Figure 14. The EVOL gen-
erations are presented schematically, as a result is plot-
ted for each 20th offspring (even though in total there 
were 200 mutants in total, each one is considered as 
a separate generation).

Similar to the first optimization described in this 
paper, the first significant mass decrease is achieved 
just due to random search in the first MIGA generation.  
Subsequent generations provide an additional 8% mass 
reduction (total of 1000 function calls). The best‑fitted 
individual from the distributed genetic algorithm was 
automatically chosen as the initial parent for the evolu-
tion strategy. After generating 200 subsequent mutants 
by the EVOL, the brackets mass was furtherly lowered 
by 7%. The final mass decrease was achieved by the 
NLPQLP algorithm, which found the optimized shape 
using three gradient-based search iterations. The resul-
tant decrease in mass was achieved at the level of 0.41, 
which is very similar (2% difference) to the NLPQLP 
result of the first optimization model.

a) b)
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Fig. 12. The objective function as a function of NLPQLP iterations

Fig. 13. The distribution of the interpolation knots over the design area for the second optimization model

Fig. 14. The objective function as a function of MIGA & EVOL generations and NLPQLP iterations
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The resultant shapes at each of the optimization 
flow stages are shown in Figure 15. It is important to 
notice, that even though the material filtering was imple-
mented, the final structure again suffered from feasibility 
issues (discontinuous material distribution marked with 
red  squares). Such features could be eliminated by in-
creasing the filtering band width, on the cost of the accu-
racy of the geometrical features representation.

                   

Fig. 15. The resultant shapes for each of the optimization 
phases: a) the best fitted MIGA individual; b) the best fitted 
EVOL individual; c) the final, optimized shape after the 

NLPQLP algorithm

5. Discussion

The proposed optimization method – the level-set-
based method using finite element analysis, was able to 
solve the highly nonlinear optimization task presented. 
In the current version of the method, there is a possibil-
ity to create an infeasible design. That is why authors 
aim to resolve those issues by implementing material 
distribution filtering routines and/or applying differ-
ent optimization algorithms. As the calculations have 
shown, more sophisticated algorithms are needed to re-
solve the feasibility issues, or on the contrary, lower fil-
ter resolution (filtering band width) may be used to mit-
igate the effect of discontinuous material distribution.

Using random search to create the first individuals 
in the genetic algorithm, many of the created designs 
were unconnected or had poor connectivity. Such phe-
nomenon may be resolved by adding additional filtering 
or using selection even in the first generation (i.e. exclud-
ing the infeasible designs to achieve a more diverse, yet 
feasible generation). Regardless of the number of infea-
sible designs at the beginning of the genetic algorithm, 
subsequent generations consisted almost exclusively of 
feasible solutions. That was achieved by the severe pe-
nalization of designs with insufficient connectivity.

As shown in the second optimization model,  add-
ing the evolution strategy as the mid-step in the opti-
mization process, helped to reduce the mass using only 
200 function calls (comparing to 1000 for the MIGA 
and over 100 for the NLPQLP). It can be recognized 
as a compromise between the global genetic algorithm 
and local gradient-based search using only a moderate 
amount of the FEM solver calls. What is also important 
is the fact, that even though the gradient-based search 
seemed very effective (over 2% mass reduction in 3 it-
erations), the total number of finite element analysis 
is still high, as the determination of search direction, 
using finite difference approach is linearly dependent 
on the number of design parameters. This is even more 
computationally expensive, when two gradient points 
are used, which is useful in particular in the first itera-
tion of the gradient calculations, as the Hessian matrix 
is better represented (comparing to the identity matrix) 
at the beginning of the NLPQLP operation.

The proposed methodology may be applied to 
other fields of engineering such as civil engineering, 
especially if the optimization concerns the unstable be-
havior of the part or assembly. Nonetheless, the com-
bination of implicit geometry representation (as in the 
proposed level-set method) and material filtering (for 
assuring the feasibility) creates a  universal optimiza-
tion tool which can be used regardless of the shape or 
size of the optimized part. 

c)

b)a)
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