PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PCA based modification of SIFT-like methods for object class recognition

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses a novel PCA based modification of standard SIFT and PCA-SIFT algorithms for the purpose of object class recognition. New descriptors intended to be simultaneously distinctive enough to describe the difference between features belonging to separate categories and general enough to capture the variations among features from the same class are proposed. The experimental results, gained for a test database, showing the reliability of introduced approach are presented.
Rocznik
Strony
23--26
Opis fizyczny
Bibliogr. 8 poz., tab., fot.
Twórcy
autor
  • Institute of Electronics, Technical University of Lodz, 211/215 Wolczanska str., 90-924 Lodz
Bibliografia
  • [1] Amit, Y., and D. Geman. ”A computational model for visual selection”. Neural Computation 11(7), 1999: 1691--1715.
  • [2] Borenstein, E., and S. Ullman. “Class-specific, top--down segmentation”. Proceedings of ECCV 2002: 109--124.
  • [3] Burl, M., M. Weber, and P. Perona. “A probabilistic approach to object recognition using local photometry and global geometry”. Proceedings of ECCV 1998: 628--641.
  • [4] Schneiderman, H., and T. Kanade. “A statistical method for 3d object detection applied to faces and cars”. Proceedings of CVPR 2000.
  • [5] Lowe, D.G. “Distinctive Image Features from Scale-Invariant Keypoints”. International Journal of Computer Vision 2004: 91–110.
  • [6] Ke, Y., and R. Sukthankar. “PCA-SIFT: A More Distinctive Representation for Local Image Descriptors”. 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04) 2 (2004): 506--513.
  • [7] Joliff e, I.T. Principal Component Analysis. Springer-Verlag: 1986.
  • [8] Turk, M., and A. Pentland. “Face recognition using eigenfaces”. Proceedings of Computer Vision and Pattern Recognition 1991: 586–591.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6cd8147-2efa-4c08-8b88-3f2a13e10cee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.