PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shear modulus and damping ratio of recycled concrete aggregate from cyclic torsional shear test

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Moduł ścinania i współczynnik tłumienia kruszywa betonowego pochodzącego z recyklingu z cyklicznego testu ścinania skrętnego
Języki publikacji
EN PL
Abstrakty
EN
This study examines the small-strain dynamic properties of three mixtures of recycled concrete aggregate (RCA) using laboratory investigations typical of natural soils, namely cyclic torsional shear (CTS) tests. In order to construct two samples, crushed concrete curbs originating from a demolition site in Warsaw was employed. To create the third sample, crushed concrete from demolished buildings also Warsaw was used, mainly from concrete wall and floor elements. A series of CTS tests were performed to investigate the impact of various parameters, including confining pressure, excitation frequency, and number of vibration cycles on the G−modulus, Gmax−modulus, shear modulus degradation curve G(γ)/Gmax, D−ratio, Dmin−ratio, variation in damping curve D(γ)/Dmin. The resulting stiffness and damping characteristics of the analysed concrete aggregate were compared with those of natural gravel and sand aggregate – natural aggregate (NA). The results collected from the CTS tests indicate that the performance of most RCA is comparable to that of NA and can be used as an unbound granular material (UGM).
PL
W niniejszym badaniu zbadano właściwości dynamiczne przy małych odkształceniach trzech mieszanek kruszywa betonowego z recyklingu (RCA) przy użyciu badań laboratoryjnych typowych dla gruntów naturalnych, a mianowicie badania cyklicznego ścinania skrętnego (CTS). Do wykonania dwóch próbek wykorzystano pokruszone krawężniki betonowe pochodzące z rozbiórki w Warszawie. Do stworzenia trzeciej próbki wykorzystano pokruszony beton z rozebranych budynków, także z Warszawy, głównie z betonowych elementów ścian i podłóg. Przeprowadzono serię testów CTS w celu zbadania wpływu różnych parametrów, w tym ciśnienia ograniczającego, częstotliwości wzbudzenia i liczby cykli wibracji na moduł G, moduł Gmax, krzywą degradacji modułu ścinania G(γ)/Gmax, współczynnik D, współczynnik Dmin, zmianę krzywej tłumienia D(γ)/Dmin. Uzyskane charakterystyki sztywności i tłumienia analizowanego kruszywa betonowego porównano z charakterystykami naturalnego kruszywa żwirowo-piaskowego – kruszywa naturalnego NA). Wyniki zebrane z badań CTS wskazują, że wydajność większości destruktu betonowego jest porównywalna z kruszywem naturalnym i może być stosowana jako niezwiązany materiał ziarnisty (UGM).
Rocznik
Strony
387--398
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Szkoła Główna Gospodarstwa Wiejskiego, Katedra Geotechniki, Instytut Inżynierii Lądowej, ul. Nowoursynowska 159, 02-776 Warszawa
Bibliografia
  • 1. A Sustainable Industry for a Sustainable Europe. European Aggregates Association (UEPG), Brussels, Belgium, 2017
  • 2.  Silva R.V., De Brito J., Dhir R.K.: Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials, 65, 2014, 201–217, DOI: 10.1016/j.conbuildmat.2014.04.117
  • 3.  Cristelo N., Vieira C.S., De Lurdes Lopes M.: Geotechnical and geoenvironmental assessment of recycled construction and demolition waste for road embankments. Procedia Engineering, 143, 2016, 51–58, DOI: 10.1016/j.proeng.2016.06.007
  • 4.  Herrador R., Pérez P., Garach L., Ordóñez J.: Use of recycled construction and demolition waste aggregate for road course surfacing. Journal of Transportation Engineering, 138, 2, 2012, 182–190, DOI: 10.1061/(ASCE)TE.1943-5436.0000320
  • 5. Da Conceição Leite F., Dos Santos Motta R., Vasconcelos K.L., Bernucci L.: Laboratory evaluation of recycled construction and demolition waste for pavements. Construction and Building Materials, 25, 2011, 2972–2979, DOI: 10.1016/j.conbuildmat.2010.11.105
  • 6. Cardoso R., Silva R.V., De Brito J., Dhir R.: Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review. Waste Management, 49, 2015, 131–145, DOI: 10.1016/j.wasman.2015.12.021
  • 7. Herrador R., Pérez P., Garach L., Ordóñez J.: Use of recycled construction and demolition waste aggregate for road course surfacing. Journal of Transportation Engineering, 138, 2, 2012, 182–190, DOI: 10.1061/(ASCE)TE.1943-5436.0000320
  • 8. Gabryś K., Sas W., Soból E., Głuchowski A.: Application of bender elements technique in testing of anthropogenic soil-recycled concrete aggregate and its mixture with rubber chips. Applied Sciences, 7, 7, 741, 2017, DOI: 10.3390/app7070741
  • 9. Tam V.W.Y., Tam C.M.: Crushed Aggregates Production from Centralized Combined and Individual Waste Sources in Hong Kong. Construction and Building Materials, 21, 4, 2007, 879–886, DOI: 10.1016/j.conbuildmat.2005.12.016
  • 10. Poon C.S., Chan D.: Feasible Use of Recycled Concrete Aggregates and Crushed Clay Brick as Unbound Road Sub-Base. Construction and Building Materials, 20, 8, 2006, 578–585, DOI: 10.1016/j.conbuildmat.2005.01.045
  • 11. Gomez-Soberon J.M.V.: Porosity of Recycled Concrete with Substitution of Recycled Concrete Aggregate: An Experimental Study. Cement and Concrete Research, 32, 8, 2002, 1301–1311, DOI: 10.1016/S0008-8846(02)00795-0
  • 12. Courard L., Michel F., Delhez P.: Use of Concrete Road Recycled Aggregates for Roller Compacted Concrete. Construction and Building Materials, 24, 3, 2010, 390–395, DOI: 10.1016/j.conbuildmat.2009.08.040
  • 13. Aurstad J., Aksnes J., Dahlhaug J.E., Berntsen G., Uthus N.: Unbound crushed concrete in high volume roads – a field and laboratory study. 5th International Conference on Research and Practical Applications Using Wastes and Secondary Materials in Pavement Engineering, 22–23 February 2006, Liverpool John Moores University, Liverpool 2006
  • 14. Poon C.S., Chan D.: Paving Blocks Made with Recycled Concrete Aggregate and Crushed Clay Brick. Construction and Building Materials, 20, 8, 2006, 569–577, DOI: 10.1016/j.conbuildmat.2005.01.044
  • 15. Papp W.J.J., Maher M.H., Bennert T.A., Gucunski N.: Behavior of Construction and Demolition Debris in Base and Subbase Applications. Geotechnical Special Publication, 79, 1998, 122–135
  • 16. Bennert T., Papp W.J.J., Gucunski N.: Utilization of Construction and Demolition Debris under Traffic-Type Loading in Base and Subbase Applications. Transportation Research Record: Journal of the Transportation Research Board, 1714, 1, 2000, 33–39, DOI: 10.3141/1714-05
  • 17. Ahmad M., Ray R.: The Dynamic Properties of Sand under Torsion: A Literature Review. Geotechnics, 3, 2, 2023, 480–514, DOI: 10.3390/geotechnics3020027
  • 18. He H., Senetakis K.: A study of wave velocities and the Poisson ratio of recycled concrete aggregate. Soils and Foundations, 56, 4, 2016, 593–607, DOI: 10.1016/j.sandf.2016.07.002
  • 19. He H., Senetakis K.: The effect of grain size on Gmax of a demolished structural concrete: A study through energy dispersive spectroscopy analysis and dynamic element testing. Soil Dynamics and Earthquake Engineering, 89, 2016, 208–218, DOI: 10.1016/j.soildyn.2016.08.011
  • 20. EN 206:2013+A2:2021/1M:2022 Concrete. Part 1: Requirements, Performance, Production and Conformity
  • 21. Gabryś K., Šadzevičius R., Dapkienė M., Ramukevičius D., Sas W.: Effect of a Fine Fraction on Dynamic Properties of Recycled Concrete Aggregate as a Special Anthropogenic Soil. Materials, 16, 4, 4986, 2023, DOI: 10.3390/ma16144986
  • 22. Ulsen C., Kahn H., Hawlitschek G., Masini E.A., Angulo S.C.: Separability studies of construction and demolition waste recycled sand. Waste Management, 33, 3, 2013, 656–662, DOI: 10.1016/j.wasman.2012.06.018
  • 23. Gabryś K., Soból E., Sas W.: Physical, deformation, and stiffness properties of recycled concrete aggregate. Sustainability, 13, 8, 4245, 2021, DOI: 10.3390/su13084245
  • 24. WT-4 Unbound Mix for National Roads. Technical Specifications, Directive No 102 of Polish General Director of National Roads and Motorways. Polish General Director of National Roads and Motorways, Warsaw, Poland, 2010
  • 25. Pavements constructed with Clay, Natural Stone or Concrete – Pavers. Guide for the Design of Permeable Pavements Constructed with Concrete Paving Blocks and Flags, Natural Stone Slabs and Setts and Clay Pavers, BS 7533-13:2009. BSI, London, UK, 2009
  • 26. AASHTO M 145-91 (2008) Standard Specification for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes
  • 27. PN-EN ISO 14688-1: 2018-05 Rozpoznanie i badania geotechniczne – Oznaczanie i klasyfikowanie gruntów – Część 1: Oznaczanie i opis
  • 28. ASTM D698-12 (2008) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3))
  • 29. Sas W., Gabryś K., Szymański A.: Experimental studies of dynamic properties of Quaternary clayey soils. Soil Dynamics and Earthquake Engineering, 95, 2017, 29–39, DOI: 10.1016/j.soildyn.2017.01.031
  • 30. Gabryś K., Sas W., Soból E., Głuchowski A.: Torsional shear device for testing the dynamic properties of recycled material. Studia Geotechnica et Mechanica, 38, 4, 2016, 15–24, DOI: 10.1515/sgem-2016-0027
  • 31. Ahmad M., Ray R.: Damping of Dry Sand in Resonant Column-Torsional Simple Shear Device. Sustainability, 15, 4, 2023, 11060, DOI: 10.3390/su151411060
  • 32. Bai L.: Preloading Effects on Dynamic Sand Behavior by Resonant Column Tests. PhD Thesis. Technische Universitaet Berlin, 2011
  • 33. Stokoe K.H., Darendeli M.B., Andrus R.D., Brown L.T.: Dynamic soil properties: laboratory, field and correlation studies. in: Proceedings of the second International Conference on Earthquake Geotechnical Engineering, Lisboa, Portugal, 21–25 June 1999. Balkema, 1999
  • 34. Madhusudhan B.N., Senetakis K.: Evaluating use of resonant column in flexural mode for dynamic characterization of Bangalore sand. Soils and Foundations, 56, 3, 2016, 574–580, DOI: 10.1016/j.sandf.2016.04.021
  • 35. Ishihara K.: Soil behavior in earthquake geotechnics. Oxford, Clarendon Press, 1996
  • 36. Li J., Cui J., Shan Y., Li Y., Ju B.: Dynamic Shear Modulus and Damping Ratio of Sand-Rubber Mixtures under Large Strain Range. Materials, 13, 18, 4017, 2020, DOI: 10.3390/ma13184017
  • 37. Hardin B.O., Drnevich V.P.: Shear Modulus and Damping in Soils: Measurement and Parameter Effects. Journal of the Soil Mechanics and Foundations Division, 98, 6, 1972, 603–624 DOI: 10.1061/JSFEAQ.0001756
  • 38. Bolton M.D., Wilson J.M.R.: An Experimental and Theoretical Comparison between Static and Dynamic Torsional Soil Tests. Geotechnique, 39, 4, 1989, 585–599, DOI: 10.1680/geot.1989.39.4.585
  • 39. Lo Presti D.C.F., Jamiolkowski M., Pallara O., Cavallaro A., Pedroni S.: Shear modulus and damping of soils. Géotechnique, 47, 3, 1997, 603–617, DOI: 10.1680/geot.1997.47.3.603
  • 40. Silver M.L., Seed H.B.: Deformation Characteristics of Sands under Cyclic Loading. Journal of the Soil Mechanics and Foundations Division, 97, 8, 1971, 1081–1098, DOI: 10.1061/JSFEAQ.0001648
  • 41. Camacho-Tauta J., Cascante G., Viana da Fonseca A., Santos J.A.: Time and frequency domain evaluation of bender element systems. Géotechnique, 65, 7, 2015, 548–562, DOI: 10.1680/geot.13.P.206
  • 42. Nedeljković M., Visser J., Šavija B., Valcke S., Schlangen E.: Use of fine recycled concrete aggregates in concrete: A critical review. Journal of Building Engineering, 38, 102196, 2021, DOI: 10.1016/j.jobe.2021.102196
Uwagi
An extended version of the article from the Conference ‟Modern Road Pavements – MRP’2023” – Recycling in road pavement structures co-edited by Martins Zaumanis and Marcin Gajewski, published in frame of the Ministry of Education and Science project No. RCN/SP/0569/2021/1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6cbc3d5-c8a5-4d45-a5e7-6d6a32207fbd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.