PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bubble boiling in flow of refrigerating media

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes results of investigations of heat transfer and pressure drop during bubbly boiling of refrigerating media. In this article were presented of authors own experimental studies and were proposed new simple calculation model describing bubble boiling in the tubular channel. The author attempts to put forward a simplified description of the process of bubble boiling in a straight pipe. The two-phase one-component (liquid-vapour) system is treated as a continuum governed by the laws of conservation of energy, momentum and mass. The continuum is characterised by parameters that describe the two-phase system, such as density of the two-phase mixture, static void fraction or static equilibrium dryness fraction. In view of engineering applications, a one-dimensional model is used where physical quantities are cross-section averaged. This way the average velocity, pressure, temperature, and so on, are introduced. The results of the proposed model have been compared with the results of the experimental research with satisfactory compliance.
Rocznik
Strony
57--64
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Department of Power Engineering, Koszalin University of Technology, Raclawicka 15-17, 75-620, Koszalin, Poland
Bibliografia
  • 1. Bilicki Z.: Analysis of simplifications in one-dimensional equations for two-phase channel flows. Transactions of the Institute of Fluid-Flow Machinery, Gdansk 1983, no 168/1067.
  • 2. Bohdal T.: Investigations of environmentally friendly refrigerants phase changes in minichannels. Annual Set of The Environment Protection, Vol. 15, 107 – 126, 2013.
  • 3. Cheng K.H., Aradi M.M., Dessiatoun S.: Compo- and enhancement of boiling heat transfer of R134a in a tube bundle. ASHRAE Transaction 1995, Vol. 101, Part I.
  • 4. Eckeis S.J., Doerr T.M., Pate M.B.: Zu-tube heat transfer and pressure drop of R134a and microfin tube. Part I. Evaporation, ASHRAE Transactions, Vol. 100, Part I, 1994.
  • 5. Jung S., Kim H,: An experimental method to simultaneously measure the dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface, International Journal of Heat and Mass Transfer 73 (2014) 365–375.
  • 6. Kharangate C.R., Mudawar I.: Review of computational studies on boiling and condensation, International Journal of Heat and Mass Transfer 108 (2017) 1164–1196.
  • 7. Kharangate C.R., Lee H., Mudawar I.: Computational modeling of turbulent evaporating falling films, International Journal of Heat Mass Transfer 81 (2015) 52–62.
  • 8. Kim J.: Review of nucleate pool boiling bubble heat transfer mechanisms, International Journal of Multiphase Flow 35 (2009) 1067–1076.
  • 9. Leong K.C., Ho J.Y., Wong K.K.: A critical review of pool and flow boiling heat transfer of dielectric fluids on enhanced surfaces, Applied Thermal Engineering 112 (2017), 999–1019.
  • 10. Shah M.M.: Unified correlation for heat transfer during boiling in plain mini/micro and onventional channels, International Journal of Refrigeration 74 (2017), 606 – 626.
  • 11. Takamatsu H., Momoki S., Fujii T.: A correlations for forced convective boiling heat transfer of pure refrigerants in a horizontal smooth tube. Int. J. Heat Mass Transfer 1993, Vol. 36, No 13, pp. 3351.
  • 12. Yang Z., Peng X.F., Ye P.: Numerical and experimental investigation of two phase flow during boiling in acoiled tube, Int. J. Heat Mass Transfer 51 (2008) 1003–1016.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6cb3d18-5f34-400e-828d-9adfde94b6e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.