PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of the material destruction of vertically arranged honeycomb cellular structure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of the experimental and numerical analysis of material destruction of honeycomb cellular structure. Based on the experimental research, the results of numerical calculations regarding the compression process were verified along with the correctness of used constitutive numerical model. The destruction was analyzed for the casting with no structural defects and for the casting with detected porosities. The results were compared to the structural strength of the honeycomb structure manufactured on the CNC machine. The metallic honeycomb structure was manufactured as a casting of Al alloy in the investment casting technology. For manufacturing purposes the honeycomb model was obtained in additive manufacturing process. The castings and the CNC honeycomb were used in the compression test trials. The process was controlled by the displacement and the results were registered as the changes of the height and the force value. Based on the experimental results the numerical model of honeycombs was introduced for the numerical analysis of the energy absorption and compression process. The results showed good correlation between the experiment and FEM (Finite Element Method) analysis.
Rocznik
Strony
1300--1308
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
autor
  • Foundry Research Institute, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
Bibliografia
  • [1] E. du Maire, T. Schmidt, Bionik und Werkzeugmaschinenguss – ein wiederschpruch Konstr. Giessen. 28 (2) (2003) 9–12.
  • [2] M. Cholewa, T. Szuter, Structure of AlSi skeleton castings, Arch. Foundry Eng. 12 (2) (2012) 147–152.
  • [3] M. Cholewa, T. Szuter, M. Dziuba, Basic properties of 3D cast skeleton structures, Arch. Mater. Sci. Eng. Process. 52 (2) (2011) 101–111.
  • [4] J. Piekło, S.S. Pysz, M. Małysza, Proces wykonania i mechaniczne właściwości odlewanych, uporządkowanych konstrukcji komórkowych ze stopu Al-Si, Prace Instyt. Odlewn. 1 (4) (2010) 17–29.
  • [5] M. Mazur, M. Leary, M. McMillan, J. Elambasseril, M. Brandt, SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices, Rap. Protot. J. 22/3 (2016) 504–518L;ĆL. Valdevit, Z. Wei, C. Mercer, F.W. Zok, A.G. Evans, Structural performance of near-optimal sandwich panels with corrugated cores, Int. J. Solids Struct. 43 (2006) 4889–4905.
  • [6] S. Chiras, D.R. Mumm, A.G. Evans, N. Wicks, J.W. Hutchinson, K. Dharmasena, H.N.G. Wadley, S. Fichter, The structural performance of near-optimized truss core panels, Int. J. Solids Struct. 39 (2002) 4093–4115.
  • [7] J. Piekło, S. Pysz, M. Małysza, A. Karwiński, Analysis by numerical calculations of the depth and dynamics of the penetration of ordered cellular structure made by casting from AlSi10Mg eutectic alloy, Arch. Foundry Eng. 11 (3) (2011) 171–176.
  • [8] B. Hucko, L. Faria, Material model of metallic cellular solids, Comput. Struct. 62 (6) (1997) 1049–1057.
  • [9] L.J. Gibson, M.F. Ashby, Cellular Solids – Structure and Properties, Pergamon Press, Oxford, Toronto, 1987.
  • [10] N.G. Haydn, N.G. Wadley, Cell. Met. Manuf. Adv. Eng. Mater. 4 (10) (2002) 726–733.
  • [11] H.N.G. Wadley, N.A. Fleck, A.G. Evans, Fabrication and structural performance of periodic metal sandwich structures, Compos. Sci. Technol. 63 (2003) 2331–2343.
  • [12] M.M. Piekło, Methods of additive manufacturing used in the technology of skeleton castings, Arch. Metall. Mater. 59 (2) (2014) 699–702.
  • [13] L. Gołaski, Elements of Experimental Fracture Mechanics, Politechnika Świętokrzyska, Kielce, 1992 (in Polish).
  • [14] Abaqus 6.14 Analysis User's Manual, Dassault Systemes, 2014.
  • [15] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth, Part I – yield criteria and flow rules for porous ductile media, journal of engineering materials and technology, Trans. ASME 99 (1) (1997) 2–15.
  • [16] V. Tvergaard, Ductile fracture by cavity nucleation between larger voids, J. Mech. Phys. Solids 30 (1982) 265–286.
  • [17] V.V. Tvergaard, A.A. Needelman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metall. 32 (1) (1984) 157–169.
  • [18] J. Skrzypek, Fundamentals of damage mechanical, Politechnika Krakowska, Kraków, 2006 (in polish).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6c3d814-600a-4247-bfa9-a5fd88837eab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.