PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new approach to flux deposition for brazing aluminium by low pressure cold spraying

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of study on the possibility of Nocolok flux deposition to aluminium substrates using the low-pressure cold gas spraying (LPCS) method. An innovative method of applying flux in the form of a powder without organic adhesive additives was proposed, allowing strict control of the deposited material. The influence of the flux powder feeding rate (PFR – 4.5 g/min, 6.3 g/min and 8.5 g/min) on the efficiency of the brazing process of AA3003 aluminium alloy plates was investigated. The results of energy dispersive spectrometry (EDS) analysis of the deposited flux coatings are presented for various process parameters. The wettability tested by spreading the B-AlSi12 filler metal on flux-covered aluminium substrates increased significantly with increasing PFR – the contact angle decreased from 21.0° to 4.6°. Microstructure analysis confirmed the high quality of the brazed joints, which were devoid of braze incompatibilities.
Wydawca
Rocznik
Strony
114--124
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Department of Metal Forming, Welding and Metrology, Wroclaw University of Science and Technology, Wrocław, Poland
  • Department of Metal Forming, Welding and Metrology, Wroclaw University of Science and Technology, Wrocław, Poland
  • Mahle Behr Corp., Ostrow Wielkopolski, Poland
Bibliografia
  • [1] Fabian R. Vacuum technology: practical heat treating and brazing. ASM International; Ohio, 1993.
  • [2] Singh M, Ohji T, Asthana R. Green and sustainable manufacturing of advanced material. Oxford (UK): Elsevier; 2015.
  • [3] Shah RK. Advances in automotive heat exchanger technology. SAE Int. 2003;112: 631–41.
  • [4] Mirski Z, Pabian J. Modern trends in production of brazed heat exchangers for automotive industry. Weld Technol Rev. 2017;89(8): 5–12.
  • [5] Mirski Z, Pabian J, Wojdat T, Hejna J. Significance of the brazing gap in the brazing of aluminium heat exchangers for automotive industry. Weld Technol Rev. 2020;92(4): 7–14.
  • [6] Woods R. CAB brazing metallurgy. 12th annual international invitational aluminum brazing seminar. Michigan (MI), USA: AFC Holcroft, NOVI; 2007.
  • [7] Kuczmaszewski J, Zalewski K. Machining of aluminum and magnesium alloys. Lublin, Poland: Lublin University of Technology; 2015.
  • [8] Orman L, Swidersky HW, Lauzon D. Brazing of aluminium alloys with higher magnesium content using non-corrosive fluxes. Alum Brazing. 2014;52: 24–9.
  • [9] Zhao H, Woods R. 10 – Controlled atmosphere brazing of aluminum. In: Dušan P Sekulić (ed.) Woodhead publishing series in welding and other joining technologies. Adv Brazing. Woodhead Publishing; Sawston (UK), 2013. p. 280–23.
  • [10] Mirski Z, Granat K, Misiek A. Brazing of aluminum heat exchangers in the automotive industry. Spajanie materiałów konstrukcyjnych. 2015;28(2): 32–4.
  • [11] Hu J, Zhang Q. Investigation of pseudo-ternary system AlF3–KF–KCl. Thermochim Acta. 2003;404(1–2): 3–7.
  • [12] Markovits T, Takács J, Lovas A, Belt J. Laser brazing of aluminium. J Mater Process Technol. 2003;143–144: 651–5.
  • [13] Pabian J. Analysis of erosion phenomena in brazing of aluminum heat exchangers. Scientific seminar. Wrocław, Poland: Wroclaw University of Technology; 2018.
  • [14] Orman L. Quality tests of brazed plate heat exchangers using paint flux technology. Internal Report for Valeo. Valeo, Skawina, Poland; 2017.
  • [15] European Committee for Electrotechnical Standardization (CENELEC). Refrigerating systems and heat pumps - Safety and environmental requirements - Part 2: design, construction, testing, marking and documentation. Brussels: CENELEC; 2017. Standard No. SIST EN 378–2:2017.
  • [16] Nastic A, Jodoin B, Legoux JG, Poirier D. Particle impact characteristics influence on cold spray bonding: investigation of interfacial phenomena for soft particles on hard substrates. J Therm Spray Technol. 2021;30: 2013–33.
  • [17] Yin S, Suo X, Liao H, Guo Z, Wang X. Significant influence of carrier gas temperature during the cold spray process. Surf Eng. 2014;30(6): 443–50.
  • [18] Singh S, Raman RKS, Berndt CC, Singh H. Influence of cold spray parameters on bonding mechanisms: a review. Metals. 2021;11: 2016.
  • [19] Brusentseva T, Shikalov V, Lavruk S, Fomin V. Simulation of thermoplastic powder cold spraying. J Sib Fed Univ Math Phys. 2021;14(6): 726–34.
  • [20] Haban I, Sun Y, Veysset D, Nelson KA, Schuh CA. The effect of substrate temperature on the critical velocity in microparticle impact bonding. Appl Phys Lett. 2021;119: 011903
  • [21] da Silva FS, Bedoya J, Dosta S, Cinca N, Cano IG, Guilemany JM, et al. Corrosion characteristics of cold gas spray coatings of reinforced aluminum deposited onto carbon steel. Corros Sci. 2017;114: 57–71
  • [22] Winnicki M, Baszczuk A, Jasiorski M, Borak B, Małachowska A. Preliminary studies of TiO2 nanopowder deposition onto metallic substrate by low pressure cold spraying. Surf Coat Technol. 2019;371: 194–202
  • [23] Baszczuk A, Jasiorski M, Winnicki M. Low-temperature transformation of amorphous Sol–Gel TiO2 powder to anatase during cold spray deposition. J Therm Spray Tech. 2018;27: 1551–62.
  • [24] Winnicki M. Advanced functional metal-ceramic and ceramic coatings deposited by low-pressure cold spraying: a review. Coatings. 2021;11: 1044.
  • [25] European Committee for Electrotechnical Standardization (CENELEC). Aluminium and aluminium alloys - Chemical composition and form of wrought products - Part 3: chemical composition and form of products. Brussels: CENELEC; 2014. Standard No. EN 573–3:2014.
  • [26] European Committee for Electrotechnical Standardization (CENELEC). Welding consumables: wire electrodes, wires and rods for welding of aluminium and aluminium alloys: classification. Brussels: CENELEC; 2016. Standard No. EN ISO 18273:2016.
  • [27] Massalski TB. Binary alloys phase diagrams. ASM International. Vol. 1; Ohio, 1992.
  • [28] Eustathopoulos N, Nicholas M, Drevet B. Wettability at high temperatures. Pergamon materials series. Pergamon, Oxford (UK). Vol. 3; 1999.
  • [29] Schwartz MM. Brazing, second edition. Mel M. Schwartz (Ed.) In: The materials informations society. Ohio (OH), USA: ASM International; 2003.
  • [30] Roberts P. Industrial brazing practice. 2nd ed. London: CRC Press. Taylor and Francis Group; 2013.
  • [31] Swiderski HW, Lauzon D. Myths about aluminium brazing with non-corrosive fluxes NOCOLOK: Flux Brazing Technology. Materials of Solvay Flux GmbH. May 2001, Aachen, Germany. Available from: http://www.aluminium-brazing.com/sponsor/nocolok/Files/PDFs/31390.pdf
  • [32] Swidersky HW, Ottmann A, Belt H. Comparison of flux characteristics and flux transfer systems in electrostatic NOCOLOK® flux application for aluminum brazing. Invitational aluminum brazing seminar: Thermal Alliance Internationl; Detroit, 1999.
  • [33] Milani SAAH. Effect of NOCOLOK flux dry-off temperature on mechanical properties of brazed joint for automotive aluminum-based heat exchangers. Eng Res Express. 2020;2: 025003.
  • [34] Wang Z, Cai S, Jin K, Wang X, Chen W. In-flight aggregation and deposition behaviour of particles in low pressure cold spray. Surf Coat Technol. 2021;409: 126875.
  • [35] Alonso L, Garrido MA, Poza P. An optimisation method for the cold-spray process: on the nozzle geometry. Mater Des. 2022;214: 110387.
  • [36] Buhl S, Breuninger P, Antonyuk S. Optimization of a laval nozzle for energy-efficient cold spraying of microparticles. Mater Manuf Processes. 2018;33(2): 115–22.
  • [37] Winnicki M, Piwowarczyk T, Małachowska A. General description of cold sprayed coatings formation and of their properties. Bull Pol Acad Sci Techn Sci. 2018;66(3): 301–10.
  • [38] Baranowski M, Bober M, Kudyba A, Sobczak N. The effect of surface condition on wetting of hastelloy® X by brazing filler metal of Ni-Pd-Cr-B-Si system. J Mater Eng Perform. 2019;28: 3950–9.
  • [39] Chung CL, Moon KS, Wong CP. Influence of flux on wetting behavior of lead-free solder balls during the infrared-reflow process. J Electron Mater. 2005;34: 994–1001.
  • [40] Yao Z, Xue S, Zhang J. Comparative study on the activity of GaF3 and Ga2O3 nanoparticle-doped CsF-AlF3 flux for brazing 6061 Al/Q235 steel joints. Crystals. 2020;10: 498–508.
  • [41] Nylén M, Gustavsson U, Hutchinson W, Karlsson Å, Johansson H. Mechanisms of erosion during brazing of aluminium alloys. Mater Sci Forum. 2002;396–402: 1585–90.
  • [42] Krystek K, Krzanowska K, Wierzbińska M, Motyka M. The effect of selected process conditions on microstructure evolution of the vacuum brazed joints of hastelloy X nickel superalloy sheet. Arch Metall Mater. 2022;67(4): 1551–61.
  • [43] Lacaze J, Tierce S, Lafont M-C, Thebault Y, Pébère N, Mankowski G, et al. Study of the microstructure resulting from brazed aluminium materials used in heat exchangers. Mater Sci Eng A. 2005; 413–414: 317–21.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6c2930a-9a94-48ad-a70c-2e881d45237f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.