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Abstract

Understanding environment is a very complex task. Modeling and development of com-

ponents of the environment in a symbolic way permit to simplify and clarify functional

parts of components and interactions. In order to have a complete system specification,

a rigorous behavior description is needed. Different levels of behavior abstraction are

taking into account. The objective of our semantic modeling is to enhance architectural

design and reduce complexity. It permits to agents to understand the environment, manage

events and adapt the architecture. All the concepts of the environment like the component

models and their behavior models are stored under event frames written in knowledge

representation language. We present in this document, a generalized meta-model of be-

havioral aspects, that indexes the various environment behaviors in three ontologies. We

have fully linked abstraction level with modeling and execution of scenarios. We show

how software semantic agents can be modeled to build any interactive architecture.

1 Introduction

Complex systems require expressive notations

for representing their software architecture. In this

field, Component and Domain based Software En-

gineering has now emerged as a discipline for sys-

tems development. Robotic systems or software

systems and their environment can often be seen

as a very complex architecture in reality. Soft-

ware engineering needs systems comprehension,

design, evolution, reuse, analysis, construction, de-

ployment and automatic reconfiguration. As a def-

inition, environment is a fully observable set of

parts of a program or a system, or parts of hu-

man environment (house, city and planet) where

agents, objects and other entities live inside. We

also refer to the work of [1] and [2]. Our defi-

nition of understanding and meaning of behaviors

is well explained in [3]. In Multi Agents Systems

(MAS), agents are autonomous, heterogeneous and

dynamic components. The organizational stance

permits to deal with complexity and dynamism of

component interactions. They are used in mod-

eling and simulation [4, 5]. Agents need Agent

Communication Language (ACL). ACLs allow for

a more anthropomorphic description of the inter-

active roles and protocols than connectors. Sec-

ondly, they allow for more flexibility, as the equiva-

lent to protocols of connector which can be derived

from the communicative action semantics. We pro-

pose in this paper a kind of new ADL/ACL based

on an environment knowledge representation lan-

guage (EKRL). ADL and ACL are not oriented to

all behavioral aspects of the environment. EKRL is

used to define and connect components in order to

build, transfer, store, and query events in a knowl-

edge base. EKRL gives a description of behavior

and modeling entities including the system or the

multiple parts of the system in case of pervasive

architecture, ubiquitous network or ambient intel-

ligence.

This work is a new contribution to Artificial In-

telligence, in particular, the memory structure and

the EKRL presented in this paper. It brings to agent

the means to reason about their tasks and environ-

ment as human do, with words and by focusing on
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different levels of abstraction of behavioral aspects

of entities living or moving in human environment.

This work permits to simplify or reduce the per-

cepts of environment to reason on it (i.e. extract-

ing the meaning using models), to learn by stor-

ing new concepts, classes and instances from other

specific domain ontologies, and using event models

(also described with words) to program the agent.

Moreover, our generic agent with its memory may

be distributed.

After a state of the art on modeling languages

and behavior specifications, we present our environ-

ment representation in terms of behaviors, scenarios

and any other information stored and exchanged in

EKRL.

2 Related Work

In this section, we focus on the value of spec-

ifying the behavioral aspects of architectural ele-

ments. Also, we explore behavioral aspects in ex-

isting main languages.

2.1 Modeling Behavior with Languages

Modeling architecture, components, interac-

tion, and evolution with languages close to natural

language simplifies the tasks of programming and

using in product engineering for humans. It permits

to follow the tendency of semantic web designers

to share and reuse exploitable structured knowledge

for search engines or other web services (Figure 1).

Another reason to use semantic languages is the ad-

vanced researches done on propositional and modal

logics to be integrated in MAS [6].

Figure 1. Models & Concepts Representation

A good comparison of ADLs has been done

in [7]. ACLs for specifying behaviors of agent

components are well presented in [8, 9] and [10].

Web semantic languages like RDF1 and OWL2 are

used to specify behaviors at different parts of the

architecture or components bringing disambigua-

tion. Knowledge representation language (KRL)

with ontologies [11], as shown in this paper, is more

powerful and explicit to model, specify and validate

architecture behavior.

2.2 Comparing RDF, OWL, UML and

OCL

RDF is a set of concepts or a language used for

describing knowledge. OWL is a set of concepts or

language for modeling that knowledge. UML is a

semi formal language for class-based modeling and

OWL comprise some constituents that are similar in

many respects like classes, associations, properties,

packages, types, generalization and instances [12].

Despite of the similarities, both approaches present

restrictions that can be overcome by integration.

On one hand, a key limitation of UML class-based

modeling is that it allows only static specification of

specialization and generalization of classes and re-

lationships, whereas OWL provides mechanisms to

define these as dynamic. It means that OWL per-

mits recognition of generalization and specializa-

tion between classes as well as class membership of

objects based on conditions imposed on properties

of class definitions.

Among ontology languages, Web Ontology

Language (OWL) is the most used for semantic

web applications. OWL offers a more expressive

and extensible manner of modeling data and pro-

vides versatile ways to describe classes and, based

on such descriptions, it allows type inference. In-

deed, OWL provides various means for describing

classes, which may also be nested into each other

such that explicit typing is not compulsory. One

may denote a class by a class identifier, an ex-

haustive enumeration of individuals, property re-

strictions, an intersection of class descriptions, a

union of class descriptions, or the complement of a

class description. OWL provides important features

complementary to UML and OCL/MOF [13] that

would improve software modeling: it allows differ-

1RDF: Resource Description Framework http://www.w3.org/RDF/
2OWL 2 : Ontology Web Language version 2 http://www.w3.org/TR/2009/WD-owl2-overview-20090327
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ent manners of describing classes; it handles these

descriptions as first-class entities; it provides addi-

tional constructs like transitive closure for proper-

ties; and it enables dynamic classification of ob-

jects based upon class descriptions. OWL ontolo-

gies can be operated on by reasoners providing ser-

vices like consistency checking, concept satisfiabil-

ity, instance classification and concept classifica-

tion. Specification of OWL2 contains several sub-

languages, or profiles [14], which offer increased

tractability at the expense of expressivity [15]. On-

tologies and web service architecture are now used

to design and adapt MAS [16] bringing interoper-

ability [17]. EKRL can easily integrate OWL.

2.3 Modeling Behaviors

Specifying behavior is a way to add semantic details

to structural elements and their interactions that are

time related and have other contextual characteris-

tics [18]. It is common to define a model of Meta

for the four levels of abstraction of the behaviors

(Table 1).

Table 1. Behavior Layers. Lower abstraction level

is 1, higher abstraction level is 4.

Level Behavior Layer

1 Component Model

2 Static Behavioral Model

3 Dynamic Behavioral Model

4 Architectural Model

In meta-modeling, the four layers are defined:

1. A component of the environment or system can

be split in two main parts: Behavioral content and

Interaction connectors with other components.

2. Static behavior view captures the functionality

of a component in a discrete manner, during the

system’s execution. It represents several states of

architectural elements during the system execution.

Its description is focused generally on pre- and post

conditions specification. It refers to component pro-

grams with sequential states.

3. Dynamic behavior view provides, contrary to

the static one, a continuous view of how an ar-

chitectural entity arrives in various states presented

in static view during its execution. Its descrip-

tion is based, usually, on state machines. It refers

to complex scenarios where component’s behavior

will join or split.

4. Interaction behavior view provides the external

view of the architectural entities, how they interact

with and how to reconfigure them in the system us-

ing local or global policies.

Most of the current languages are modeling the lev-

els 1 and 2 of software engineering and more often

level 3 in system engineering or software parallel

programming. Most of languages use network con-

nectors to manage input and output messages. Few

are managing behaviors and architecture changes.

2.4 Modeling Scenarios

A scenario can be expressed by a list of states and

actions like in state graph used for execution, simu-

lation and multimodal interaction to manage events.

Most of the time, these formal graphs are Petri nets,

discrete Markov decision processes (MDP) or con-

tinuous state space models. We consider that events

are messages transmitted to particular components

or broadcasted across environment. These mes-

sages (called events) are changes of the environ-

ment that must be stored in a knowledge base giv-

ing us current state, last states and actions related to

these events.

Table 2. Scenario layers. Lower abstraction level

is 1, higher abstraction level is 4.

Level Scenario Layer Behavior

1 Elementary action s Simple

2 Composed actions or

simple scenario

Sequential or

Static

3 Complex scenario or

composed scenario

Complex or

Dynamic

4 Scenario Management Architectural

Table 2 is deeply linked to Behavior table in the

third column. In meta-modeling,

1. Simple behavior concerns elementary actions re-

alized by a structural or physical component.

2. Static behavior represents a composition of ele-

mentary actions of the level 1. It permits to de-

sign the behavior of components of the system

and the rules of sequential execution of tasks.

3. Dynamic behavior implies the knowledge and
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actions are related to the evolution of the sys-

tem in space, time and other contextual roles. It

refers to several composed actions in a complex

scenario or the change of composed actions un-

der different conditions.

4. Architectural or Interaction behavior contains

meta-scenarios to apply on components as in an

external view of the system. We can change ob-

jectives online to adapt the system to the envi-

ronment and generate a reorganization of the ar-

chitecture.

3 Environment Knowledge Repre-

sentation Language

To represent what is happening in the environ-

ment during simulation or execution, in terms of

meaning or interpretation, the principle presented

in this section is to store and fuse perceived events

by respecting the previous models of behaviors and

scenarios defined in the two previous sections. A

formal grammar is required to achieve this task.

Meta-concept and Concept are parts of Meta ontol-

ogy (Figure 3) and Concepts ontology (Figure 4).

Models ontology contains event models and event

instances of a model encoded in EKRL.

3.1 EKRL Grammar of Models

EKRL can be denoted L(P(RA,. . . RA)) where L

is our event language, P is a predicate (event name

representing an action, also called open formulas in

formal logic), R is a role and A are arguments args

of a role. List of R and A forms a frame. Figure 2

presents EKRL grammar. EKRL can be integrated

to a knowledge base with an inference engine. It

brings expressivity, removes ambiguities of natural

language and permits model checking with its for-

mal logic.

Figure 2. EKRL Grammar of an Event Model

In our case, a model corresponds to an event

predicate. EKRL past events (facts), event models

and query models will be stored in the Models On-

tology (Figure 6). Ontologies are made of gener-

alization and specialization relations between con-

cept or event nodes in tree structures. Each model

is an event, atomic or not. Events ontology respects

behavioral levels.

Figure 3. Meta Ontology

Root-predicates are parent predicates, directly

located under the Models root of the tree. They

permits to improve event search. A predicate is an

event model. A fact is a past event in a frame con-

taining roles from Meta ontology and arguments.

Argument may be operator (or relationship) from

Meta Ontology and concepts from the Concepts on-

tology. They are stored in knowledge base under its

predicate. A future action or scenario to execute is

also an instance of event models. Date roles indi-

cate if fact is from past, present or future.
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Figure 4. Concepts Ontology (sample)

3.2 Modeling Entities in EKRL

Environment is a set of entities like human,

agents, robots or objects. They are linked to differ-

ent attributes. For instance, cars is a concept class

with subClassOf(terrestrial transport) relationship

like trains, buses or trucks classes. Instances

of concept trains can be Orient Express. Meta-

concepts are used to build all ontologies (nodes

properties and relationships). The root of the

Concept ontology is named Thing. Each node

of ontologies contains a unique reference (RDF

about term), a comment (RDF comment term) and

relationships like owl:complementOf, owl:oneof,

owl:unionOf, rdfs:subClassOf, rdfs:EquivalentOf

or owl:intersectionOf. These give us the possibility

to directly insert OWL files into our Concepts ontol-

ogy. Meta and Concept ontologies are not bounded

to external entities in the environment but they also

contain internal parts of the designed system inter-

acting with the environment.

One key idea must be highlighted here. Meta

and Concepts ontologies are built with OWL v2 for-

malism but we have limited them to a tree struc-

ture and not a complex graph to ensure a fast search

browsing of concepts and instances and especially

ensure graph closure. Direct relationships between

a class and a subclass are only allowed. So now

questions are: - Where are others more complex

OWL relationships? and - Where are the logical

rules to infer the properties of these concepts? The

answer is in the section 3.3, they are parts of the

facts description and they are simply EKRL event

models.

To improve later the system and manage fuzzi-

ness, we have added some values to each node.

More precisely, scaled values attached to concepts

of some nodes: access control list for rights, rank

for ordering, strength for % of truth and status for

active/not active.

3.3 Modeling Behaviors in EKRL

In the previous section, we showed concepts ontol-

ogy is a tree structure. The same relationships can

exist between models. That’s why we design our

Models ontology exactly like the Concepts ontol-

ogy. The main difference is that the node structure

of models respects the EKRL grammar. So they are

much complex and each role into the model con-

tains a formula on concepts (case of an event in-

stance) or other models (case of a rule model). Fig-

ure 5 presents how concepts and models instances,

metaconcepts and concepts are attached to the Mod-

els ontology.

Figure 5. Meta, Concepts & Models ontologies
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Figure 6. Models Ontology (sample)

Behaviors are modeled by a list of events. All

event models and past events (model instances

called “facts”) are stored in the Models ontology

(Figure 6). EKRL root-predicates correspond to

all possible events happening to components. Un-

der these root predicates, subclasses of predicates

will stand to describe more refined event models

respecting the subsumption relation of the Models

ontology.

Table 3. Root predicates

Name Description

Exist New component appears or exist

Receive Sense or receive

Own Membership relations between

entities or objects

Move All simple moves, exchanges or

transfers (even virtual like bank

transfer)

Produce Transformation or build process

Behave All complex moves, adaptation

&interaction schemes

Experience Use or experiment, evaluate &

measure

In Table 3, we give a description of the root-

predicates. Exist, Own and Receive are root-

predicates corresponding to scenario level 1 (sim-

ple behavior). For example, Exist:EntityPosition is

an event model indicating a change in the position

of an entity. Move and Produce are root-predicates

corresponding to scenario level 2 (sequential be-

havior in section 2.4). Move:RobotWalk is another

event model, it is a composition of several mem-

orized past facts under Exist:EntityPosition event

model. Behave and Experience are root-predicates

at level 3 modeling complex or dynamic behaviors.

Under these root-predicates are all specializa-

tion predicates formed from the root-predicate and

at different levels of the tree. Sub-predicates are

specialized from their parent predicates. So par-

ent predicates subsume children classes and chil-

dren predicates specialize parent predicates.

The structure of our ontology itself realizes the

meaning function.In our example in Figure 7, Ta-

bles 4 and 5, we note that Behave:Gym represents

a more complex scenario using Move:Walk and

Move:Jump level 2 events. coord is an AND op-

erator and concerns a sequence of events.

Behave is not limited to human or robot enti-

ties so any agent or processes may have a specific

behavior of level 3 (section 2.4). Behave can also

be used for architectural changes by replacing or

disabling components of the level 4. Level 4 also

corresponds to the terms in the Meta ontology and

permits to refine the ontologies. Any other root

predicate may be employed to any kind of events

while the integrity of all behavioral events in Mod-

els ontology is respected. We have only presented

on the figure the root predicates and predicates that

we have been used in our agents.
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Figure 7. Gym Composite Model

Our EKRL matches well behavioral levels since

the models ontology is partitioned in sub trees of

root predicates for a fast querying and reasoning

system. EKRL Formal grammar is used to generate

and describe components and events. EKRL For-

mal language is used to query facts (instances) and

recognize scenario using meta operators and con-

cepts in a role of an event model. Roles are like

properties in OWL. Roles in our EKRL describe an

event happening on these entities or objects in all

possible contexts: temporal, spatial, acoustic, vi-

sual, danger, medical, emergency and so on. Ex-

amples of roles are SUBJECT (who or what is

concerned), OBJECT (objective, goal), CONTEXT,

CONTENT (values or string), LOCATION (space),

DATE (date and time), and so on. Following exam-

ples show that the granularity in multiple contexts

is taken into account. Gym is a predicate (i.e. a

meaning) of a higher level of behavior in this exam-

ple; Walk and Jump are middle level. The key idea

is that Gym model is a rule where precondition is

a formula on past events and postcondition is Gym

composed instance.

Table 4. Event Models

Move:Walk

Subject: human beings

Location: Living room

Context: Indoor activities

Date: date time

Move:Jump

Subject: human beings

Location: Living room

Context: Indoor activities

Date: date time

Behave:Gym

Object: coord(Move:Walk,Move:Jump)

Subject: human beings

Location: Living room

Context: Indoor activities

Date1: date time start

Date2: date time end

Table 5. Fact (Instance of Gym Model)

Behave:Gym

Object:coord(Move:Walk,Move:Jump)

Subject: John

Location: Living room

Context: Indoor activities

Date: 20/07/2010 17:00

Date: 20/07/2010 17:45

4 Environment Modeling Tool

4.1 Agents’ Architecture to Model Envi-

ronment

We consider all components of the architecture

as autonomous agents working in parallel. Agents

(Figure 8) are pieces of software with communica-

tion ability in a distributed network.

Agents may be very simple, reactive or complex

programs; they may perceive and translate sensor

values in EKRL and even control hardware parts

like drivers. Our aim is to define generic agents

to be used in any ambient, ubiquitous or pervasive

architecture in order to solve interaction with the

environment issues. Agents for interaction must re-

alize preconditions and postconditions of a multi-

modal decision process. Accordingly, two families

of agents are defined: - Fusion agents to build the

precondition under the form of composed events
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with events coming from sensors or other agents

and, - Fission agents to reduce high level events to

simple orders to be executed by the hardware actu-

ators.

In a structural point of view, the first layer of fu-

sion agents will be able to produce composed events

of level 2 (Figure 3) only by using level 1 events.

Other layers will use only level 2 events to produce

level 2 and 3 events. Agents change their state in a

required time.

Figure 9 presents our cognitive memory, into an

agent, connected to the environment. Each seman-

tic agent will have a memory designed to store and

transfer KRL messages called events. This mem-

ory is the knowledge base explained in the previous

sections. It contains our Meta, Concept and Models

ontologies. In Figure 9, we deliberately split mem-

ory into ontologies (darkgray) and facts instances

(lightgray) to indicate the difference between Re-

fine, Use, Store and Query operations on messages..

These actions are made of query or response mes-

sages. Depending on if the agent type is a fusion

agent or a fission agent, as defined above and last

events permit to compose a new event. This mem-

ory will return an action, an order or an answer to a

query.

The architecture can be designed, executed or ver-

ified by following the sequence of events stored in

the knowledge base. It means that an agent mem-

ory completely models agent and its environment

behaviors and all other parts of this agent is fully

generic code. Model checking can be applied only

on ontologies and, in particular, on models inserted

in memory. Uncertainty in observation and action

depends on sensor and hardware actuator accuracy,

on awareness (observability) and on the ability of

sensors to give its uncertainty value. Different fu-

sion levels correct this uncertainty but it deeply de-

pends on hardware parts design. It depends also of

the accuracy of event models (in roles) designed and

stored in Models ontology.

Figure 8. Semantic Agent

Figure 9. Storage and Querying the agent memory

4.2 Exchanged and Stored Information

Interaction Architecture can be defined with

agent components and event messages, we will de-

fine the layers of exchanged and stored information

(Table 6).

Description of these levels of information:

1. Networking packets and SOAP web services

protocol for interoperability. This layer implies

a web or TCP-IP network and is useful for ambi-

ent and pervasive architecture but it is more re-

lated to physical transport of information. These

messages are identical to electronic mails with

FROM, TO, SUBJECT and CONTENT fields.

2. EKRL Events are used in communication be-

tween components. They are textual messages

in the CONTENT field of the first layer. This
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content is under the form of a EKRL grammar

like in the sample (Figure 12).

3. KRL concepts and models in our two ontologies

permit the events storage like facts (past events)

and models of events, models of query and mod-

els of scenarios.

4. Meta concepts are stored in a Meta ontology

used to build Concepts and Models ontologies.

All agents are conceived to integrate these 4 layers.

Table 6. Information layers. Lower abstraction

level is 1, higher abstraction level is 4.)

Level Information Layer

1 Networking

2 Events Communication

3 Events Storage

4 Meta Information

4.3 Agent Memory Editor

To implement our approach, we have developed

an Agent Memory Editor (Figure 10). It permits to

any designer to model agents and environment be-

haviors. Memory or knowledge base of any agent

contains concepts and behavioral models into the

ontologies.

Models ontology is organized by concepts

classes with subsumption relationships or more

generalized models (root predicates) to more spec-

ified models. Our agent memory editor permits to

modify Meta terms, concepts classes and instances,

event models and instances. All ontologies have a

common tree root called “Memory”. Each tree node

is a term with a name in a natural language (several

nodes for several spoken languages), a node type

(for example Model Predicate), a relationship type

(for example subClassOf ), a unique reference term

(equivalent to OWL about), and a free comment. If

a node is an event model (Figure 11), we can add a

natural language sentence telling what’s happened,

then select a role and add one or several arguments

combined with one or several operators. For mod-

els and concepts, user or machine can add instances

online using memory’s inference engine (Figure 9).

For concepts, user or machine can add properties

and a set of concepts linked together independently

of the tree structure (replacing complex transfor-

mation operations of the matching process). Def-

initions and examples are used to insert dictionary

information to the node including gender and pho-

netic. We may attach multiple media URI to a node

too.

Figure 10. Agent Memory Models Editor

Figure 11. Model tab with auto-completion

5 Understanding Environments

5.1 Understanding Behaviors in KRL

Environment Behaviors at different levels can

be expressed by querying events using temporal and

location roles associated to a components group,

activities and scenario contexts. Present roles in

event models and facts define the possible contexts.
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Matching between facts (past perceived events) and

a context model permits to find a behavioral con-

text. It is also the case for a matching between sce-

nario models and facts. Context can be extended to

any other role terms or concepts of argument. We

may understand the environment in many ways and

granularities by focusing (cognitive awareness) to

a particular event or a long-term and complex sce-

nario.

5.2 Interaction Analysis

Interaction refers to Fusion and Fission processes

realized by semantic agents. Behavior abstraction

layers L1 to L4 contain composed events done by

fusion agents. Figure 12 shows the quantity of

events in each layer. Generally, fusion agents will

build new events from layer L2 to Layer L4. L1

contain a lot of simple events most of the time gen-

erated by sensors while L4 contain few events with

higher level meanings. Complexity of queries will

increase from layer Q1 to layer Q4.

Figure 12. Queries complexity

Events retrieval time increases for queries con-

taining lots of roles with a composition of operators,

concepts or events but once an event is composed by

another agent, it’s our case, access to facts is more

simple (linear search complexity) and fast because

less facts in the fusion case. In reality, events of

different types will be distributed on agents of dif-

ferent abstraction layers decreasing the complexity

and quantity of events to manage during a query to

their memory.

5.3 Inference Engines

Researchers are looking for mechanisms and

models to formalize and reason with domain knowl-

edge using logic and logical inference. Rea-

soners like RACER3, KAON24, Pellet5, JESS6,

Fact++7, JENA8, Hoolet9 emerge but they are based

on the weak “inference by inheritance” reasoning

paradigm because they can only solve, in prac-

tice, the most common classification “subsump-

tion” problems. The reasoner performs model

checking such that entailments of the Tarski-style

model theory are fulfilled. Languages like the Se-

mantic Web Rule Language (SWRL10), based ap-

proximately on extensions of the inferential proper-

ties of Horn clauses and Unary/Binary Datalog to

deal with RDF/OWL data structures, appear to be

for now as quite limited with respect to the range of

their possible applications (web semantic and web

services) and complicated to be used in practice.

Due to the main key idea of concepts and mod-

els ontology building, we were to make our own in-

ference engine. Our matching process lists all cor-

responding facts with these query models (a query

model is an event model with some roles duly filled)

and in case of found operators into a role, it recur-

sively evaluates or calculates it. The list of events

can be simple facts or complex scenario. Matching

process will then recognize it or build a new com-

posite event that will be sent to other agents. We

developed our own inference engine for four rea-

sons:

1. The process may realize an n-ary matching and

a unification process, building a new event by

using query models working on all roles and ar-

guments of facts stored only under a predicate

limiting the search path (a tree search).

2. Formula on arguments in a role of our event

models can recursively refers to other event

models. Meaning that in basic condition of a

query model, we use a second order logic and

in extreme condition n-order logic but only on

3htt p : //www.racer− systems.com/
4htt p : //kaon2.semanticweb.org
5htt p : //clarkparsia.com/pellet
6htt p : //www. jessrules.com
7htt p : //owl.man.ac.uk/ f act plusplus/
8htt p : // jena.source f orge.net/
9htt p : //owl.man.ac.uk/hoolet/

10htt p : //www.w3.org/Submission/SWRL/
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event models.

3. Our inference engine may compare lots of data

types not only binary or numerical like date in

temporal logic, possibilities and necessity modal

logic, deontic, and so on. We also added scales

to attached values to word.

4. Because our ontologies are stored in a database

(Figure 13).

Figure 13. Database Storage

Ontologies nodes are models or concepts stored

in the nodes table joined to textual labels for any

natural languages in the labels table. Ontologies re-

lationships between nodes are stored in links table.

EKRL matching simply wraps and executes SQL

queries. Special links composing event models and

event instances between concepts and models in a

role are stored in the ra role-arguments table. ra

table contains only a list of indexes of nodes.

They are automatically created at the insertion

of new facts (i.e. at the reception of a new event)

so all semantic and meaning are presents in this ta-

ble to provide a powerful and fast querying system,

matching is just a direct comparison of nodes in-

dexes and not a tree browsing reducing the algo-

rithmic complexity of the searching function.

5.4 Retrieving or Querying Behaviors in

EKRL

These operations consists to query knowledge

base using models ready to quickly match simple

or composed events (past facts). Filing roles like

Date or Duration permits to find a temporal set of

events. Filing role like Location permits to find a

spatial set of events. We can do the same for ob-

jects, activities and other concepts. Each of roles

can be found using different granularities in space

and time. This multi dimensional aspect can also be

managed for all roles and combination of roles (i.e.

multiple contexts).

Different levels of abstraction of behavioral as-

pects of the events are simply found by choosing

the appropriate root predicate (see section 3.3). For

the different levels of scenarios, we have to match

a list of models with composed events in space and

time. This list of queries follows possible scenarios

(Table 7).

Table 7. Example of Queries

“Who and when someone did gym at home ?”

Behave:Gym

Subject: human beings (limited to Human)

Location: home (limited to Home)

Date1: date time start

Date2: now (limited to before now)

“Who and where someone did or will do gym

in this time period?”

Behave:Gym

Subject: human beings (limited to Human)

Location: locations

Date1: date time start

Date2: date time end

“When and where John did gym in july 2010?”

Behave:Gym

Subject: John

Location: locations

Date1: 01/07/2010 0:00

Date2: 31/07/2010 23:59

6 Use Case of Multimodal Interac-

tion

6.1 Implementation

We modeled a multi layers agents’ architecture for

robotics multimodal interaction where agents have

a semantic memory and an inference engine previ-

ously presented (Section 4.1). Thus, each agent has

the ability to listen and perceive the environment

(Figure 14).
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Figure 14. MAS Architecture for Interaction

Input Services drive hardware sensors, or any

webservices in the network (pervasive and ambient

aspects); they convert and send information to next

layer agents. Output Services drive actuators con-

nected to the environment. Fusion agents realize fu-

sion process by composing higher level events (i.e.

meaning of the situation) and send it to other agents

of next abstraction layers. Fission agents are build-

ing lower level events (i.e. decision events or orders

to execute) to send to output services using query

models too.

Figure 15. Fusion Agents

Table 8. “Behave:PutThatHere” Event model

Behave:PutThatHere

Subject: coord(ArmShowsObject,

ArmShowsPosition, SpeechOrder)

Sender: coord(GestureServices, Vo-

calServices)

Location: locations

Date1: date time start

Table 9. “Behave:PutThatHere”

Behave: PutThatHere

Subject: coord(ArmShowsObject,

ArmShowsPosition, SpeechOrder)

Sender: coord(G1, G3, V1, V2)

Location: lab1

Date1: 09/10/2010 10:04

Figure 15 shows services and fusion agent in the fa-

mous interaction example of “Put That Here” [19].

Table 8 is a model event that represents “a human

giving an order and pointing an object and a lo-

cation”. To build instance of this model, Behave

fusion agent queries this model, and inference en-

gine realize the composition of previously stored

events matching it. Table 9 is one instance of hap-

pened event in a same time period and sent by 4

services embedded into the robot or belonging to

the house. G1 and G3 are two services connected

to two different sensors in charge to detect human

gesture. V1 and V2 are also two services in charge

of vocal recognition with two mikes. Behave fusion

agent (BFA1 instance) can check if several recog-

nition events match to help following decision sys-

tem. The interpretation of events happening in en-

vironment is very simple and fast. The matching

operation following a query will give a true descrip-

tion of the event. Fission agents take the incoming

event(s) and, doing the same processes of matching

and unification will produce order event(s) sent to

drive actuator(s) depending on the models in their

memory.

6.2 Experimentation

We need events in order to check multimodal fu-

sion and fission processes. For the purpose of

our experiment, we have implemented our seman-

tic agents in JADE platform on a workstation. As

today no hardware sensors and actuators communi-

cate in EKRL, we embedded an EKRL concentrator

on a Roboard11 101 card (Figure 16) connected in

TCP-IP network and able to:

– simulate virtual sensors to generate perfectly

controlled EKRL messages flow,

– convert input signals coming from actual sensors

(connected to IP ports of the Roboard or via the

networking interface) into EKRL messages,

– drive actual actuators (also connected to IP ports

of the Roboard or via the networking interface)

using EKRL output messages.

11http://www.roboard.com
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Figure 16. EKRL Concentrator Box

Figure 17. EKRL Concentrator Website

Our box has been built to generate or manage mul-

timodal inputs/outputs in simulation, in virtual re-

ality room and in real environments. It has a se-

cured website (Figure 17) to set sensors and ac-

tuators drivers, to set the tasks scheduler, to write

EKRL messages with free variables to send, and C

programs to replace free variable of the EKRL mes-

sage by the input data given by the sensor service

Gesture recognition sensors (G1 & G2 MS Kinect)

and vocal recognition sensor’s mikes (V1 & V2) are

connected to EKRL concentrator. Gestures and vo-

cal messages are read by the driver. Services con-

verted data into EKRL messages and send them to

fusion agents.

Test procedure (during 25 seconds) consists to:

– control the number of events sent to input queue

of the agent,

– monitor agent’s inference engine during test by

looking at the target service queue containing

composite events sent by the agent,

– check correct events found in the agent’s mem-

ory after the test.

6.3 Results

We focused our analysis on ignored events com-

pared to well-composed events in order to check

generated meaning (i.e. consistency). After valida-

tion of event models, we check the good correlation

between expected output and inputs. We also check

the robustness of the inference engine with noisy

events and by increasing the number of events in

time (maximum load). Results are presented in Fig-

ure 18 and Table 10.

Figure 18. EKRL Concentrator Website

Table 10. Experimental Results

Events Consistency Robustness

Normal

<1000

events/s

100% 100%

Overload

>1000

events/s

71%

29% ignored

100%

Noisy

50%

unknown

events

50%

50% events

ignored

100%

Noisy

50% false

data in

known

events

42%

17% events

not in time so

ignored

96%

Consistency decreases when too much events

occur. Performance of agents decreases due to their

processing speed but robustness is always good be-

cause, in this human situation, events are very re-

dundant so there is no impact on outputs. Agents

are able to ignore events when they are not match-

ing predicate name, time, location and other roles

in event. Robustness remains good in case of noisy

data without taking into account uncertainty mea-

sure coming from sensors and hence corrupted data.
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Consistency is weak because false data in events

impact correct events at 8%.

7 Conclusion & Future work

In this paper, we presented an EKRL able to model

behaviors at different levels of abstraction in a se-

mantic memory that can be integrated in multi

agents systems. Modeling and understanding the

environment for agents is easy to handle due to

our ontologies structure. Our EKRL is suitable for

multimodal interaction modeling, agent communi-

cation language, context aware application and in-

telligent Robotics applications. We will pursue this

work in validating semantic architecture with be-

haviors coordination and temporal synchronization

human daily activities monitoring, engineering and

robotics applications.
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