Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Impact of transport organization in an enterprise on its energy efficiency
Języki publikacji
Abstrakty
Efektywność energetyczna stała się głównym celem polityki energetycznej na świecie. Uwarunkowała politykę wobec sektorów energochłonnych, takich jak transport drogowy. Poprawa efektywności energetycznej może jednak prowadzić do zmian w popycie na usługi energetyczne, które zrównoważyłyby niektóre z uzyskanych oszczędności energii. W związku z tym prognozy oszczędności energii mogą być zawyżone. W artykule przeanalizowano efektywność energetyczną transportu drogowego w modelowym przedsiębiorstwie usługowym w Polsce. Użyto powszechnej metodologii do oszacowania funkcji zapotrzebowania na energię przy użyciu algorytmu opisanego w PN-EN 16247-4 Audity energetyczne: Część 4 – Transport. Uzyskane wyniki wskazują, że osiągnięta efektywność energetyczna jest w dużej mierze zachowana.
Energy efficiency has become the main goal of energy policy in the world. It conditioned policy towards energy-intensive sectors, such as road transport. However, improving energy efficiency may lead to changes in demand for energy services that would offset some of the energy savings achieved. Accordingly, energy saving forecasts may be overstated. The article analyzes the energy efficiency of road transport in a model service enterprise in Poland. A common methodology was used to estimate the energy demand function using the algorithm described in PN-EN 16247-4 Energy audits: Part 4 - Transport. The obtained results illustrate the average fuel efficiency at the level of 78%. The analysis of indicators shows that the analyzed years 2014÷2016 do not differ with respect to the operating speed and the time of operation of the vehicles. Compared to 2014, other years are marked by a decrease (around 15%) in vehicle speed. In 2016, the lowest equivalent fuel consumption was recorded compared to 2014 (7% difference) and 2015 (17% difference). The average annual decrease in fuel consumption of 8% in energy consumption in transport. It was also analyzed, by simulation, that in three years of fleet use reduction of the environmental impact may not be achieved after improving the efficiency.
Rocznik
Tom
Strony
73--76
Opis fizyczny
Bibliogr. 16 poz., tab., wykr.
Twórcy
autor
- Uniwersytet Rolniczy w Krakowie, Wydział Inżynierii Produkcji i Energetyki, Katedra Inżynierii Bioprocesów, Energetyki i Automatyzacji
autor
- Uniwersytet Rolniczy w Krakowie, Wydział Inżynierii Produkcji i Energetyki, Katedra Inżynierii Bioprocesów, Energetyki i Automatyzacji
autor
- Uniwersytet Rolniczy w Krakowie, Wydział Inżynierii Produkcji i Energetyki, Katedra Eksploatacji Maszyn, Ergonomii i Procesów Produkcyjnych
autor
- Uniwersytet Rolniczy w Krakowie, Wydział Inżynierii Produkcji i Energetyki, Katedra Inżynierii Bioprocesów, Energetyki i Automatyzacji
Bibliografia
- 1. Hysing E., Greening transport-explaining urban transport policy change, J. Environ. Policy Plan., 11, 243–261, 2009.
- 2. Lorek S., Spangenberg J.H., Indicators for environmentally sustainable house hold consumption, Int. J. Sustain. Dev., 4, 101–120, 2001
- 3. Berger G., Feindt P.H., Holden E., Rubik F., Sustainable mobility-challenges for a complex transition, J. Environ. Policy Plan., 7200, 37–41, 2014.
- 4. European Commission, Clean Transport, Urban Transport., Brussels, 2012
- 5. Söderholm K., Wihlborg E., Policy for sociotechnical transition: implications from Swedish historical case studies, J. Environ. Policy Plan., 17, 452–474, 2015.
- 6. Sköldberg H., Holmström D., Löfblad E., Roadmap for a Fossil FuelI independent Transportation System Year 2030,. Elforsk and Swedish Energy, 2013.
- 7. Cools M., Brijs K., Tormans H., De Laender J., Wets G., Optimizing the implementation of policy measures through social acceptance segmentation, Transp. Policy, 22, 80–87, 2012.
- 8. Hysing E., Citizen participation or representative government – building legitimacy for the Gothenburg congestion tax, Transp. Policy, 39, 1–8, 2015.
- 9. Sovacool B.K., Hirsh R.F., Beyond batteries: an examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition, Energy Policy, 37, 1095-1103, 2009.
- 10. Wüstenhagen R., Wolsink M., Bürer M.J, Social acceptance of renewable energy innovation: an introduction to the concept, Energy Policy, 35, 2683–2691, 2007.
- 11. Perlaviciute G., Steg L., Hoekstra E.J., Promoting energy developments as sustainable: does it trigger positive evaluations for people with strong biospheric values? Energy Res. Soc. Sci, 2016.
- 12. Puhe M., Schippl J., User perceptions and attitudes on sustainable urban transport among young adults: findings from Copenhagen, Budapest and Karlsruhe, J. Environ. Policy Plan., 16, 337–357, 2014.
- 13. Mitigation of Climate Change: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York. Chapter 8.IRGC, 2013
- 14. McKinnon A.C. Forecasting the carbon footprint of road freight transport in 2020. Int. J. Prod. Econ. 128, 31–42, 2010.
- 15. Walnum H.J., Aall C., Løkke S., Can rebound effects explain why sustainable mobility has not been achieved? Sustainability 6, 9510–9537, 2014.
- 16. White Paper on Transport: Roadmap to a Single European Transport Area - Towards a Competitive and Resource Efficient Transport System, European Commission, Luxembourg, 2011.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6c0379b-954c-4d52-8a7a-738a60f14172
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.