PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modernising the control network for determining displacements in hydraulic structures using automatic measurement techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over the last two decades, geodetic surveying has seen significant advancements with terrestrial and unmanned aerial vehicle (UAV) laser scanning, alongside automatic observations being increasingly utilised throughout the construction process. In the context of dam structures, periodic geodetic displacement measurements are a compulsory component of control measurements and safety assessments. In Poland, however, control measurements have largely remained rooted in traditional techniques such as classic linear and angular measurements and precise levelling. These methods are typically carried out within distinct control networks, i.e. without dual-function observation points and targets. Furthermore, network points (pillars, targets) have often not been renewed since their installation several decades ago, and glass discs, used for crown measurements in the baseline method, frequently face damage. Changes in property ownership and modifications in environmental regulations are compounded by these issues, which often impede the proper upkeep of the sight line. The article proposes the adaptation and reconstruction of control networks to incorporate automatic observation techniques, including linear and angular measurements. This approach includes activities aimed at reconstructing and supplementing damaged network structures, modernising the geodetic process of determining structure displacements, and enhancing the accuracy, credibility, and reliability of geodetic displacement measurement results. The article presents the findings of an inventory assessment conducted on the existing control network infrastructure, focusing on the analysis of displacements for structures with diverse constructions and functions - a concrete dam (class I) and a water damming weir with a water intake. Furthermore, it presents practical conclusions regarding the efficient organisation of geodetic control measurements.
Wydawca
Rocznik
Tom
Strony
66--75
Opis fizyczny
Bibliogr. 37 poz., fot., rys., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Geodesy and Cartography, Plac Politechniki 1, 00-661 Warsaw, Poland
autor
  • GEOalpin sp. z o.o., Warsaw, Poland
Bibliografia
  • Gökalp, E. and Taşçi, L. (2009) “Deformation monitoring by GPS at embankment dams and deformation analysis,” Survey Review, 41, 311, pp. 86–102. Available at: https://doi.org/10.1179/003962608X390021.
  • Haerani, N. et al. (2016) “On the performance of terrestrial laser scanner for volcanic and landslide hazard assessment in Indonesia 2013 (8131),” in Proceedings of the FIG Working Week 2016 Recovery from Disaster, pp. 1–13. Available at: https://www.researchgate.net/publication/304523856_On_the_Performance_of_TLS_for_Volcanic_and_Landslide_Hazard_Assessment_in_Indonesia (Accessed: May 15, 2023).
  • Henriques, M.J. and Casaca, J. (2003) “Monitoring displacements at large dams by means of precision traverses,” FIG Working Week 2003. Available at: http://repositorio.lnec.pt:8080/jspui/handle/123456789/17037 (Accessed: May 15, 2023).
  • IMSGeo (2021) Projekt: POIR.01.01.01-00-0942/21. Inteligentny system monitoringu obiektów zagrożonych bazujący na automatycznych pomiarach bezinwazyjnych – IMSGeo. Warszawa: GEOalpin sp. z o.o., Politechnika Warszawska. Available at: https://geoalpin.pl/realizacja-projektu-unijnego/, https://www.gik.pw.edu.pl/zgiisp/Badania-i-nauka/Projekt-POIR.01.01.01-00-0942-21-IMSGeo (Accessed: May 10, 2023).
  • Jäger, R. and Spohn, P. (2017) GOCA – GNSS/LPS/LS Based Online Control- and Alarm System Version 5.0. Karlsruhe: Hochschule Karlsruhe – Technik und Wirtschaft, Institute of Applied Research. Available at: http://goca.info/docs/flyer/GOCA-Flyer_-English.pdf (Accessed: May 10, 2023).
  • Karsznia, K. (2008) “Wykrywanie słabych punktów. Geodezyjny i geotechniczny monitoring obiektów inżynierskich w ujęciu dynamicznym [Vulnerability detection. Geodetic and geotechnical monitoring of engineering structures in a dynamic approach],” Nowoczesne Budownictwo Inżynieryjne, 7–8, pp. 72–75. Available at: http://www.nbi.com.pl/assets/NBI-pdf/2008/4_19_2008/pdf/23_wykrywanie_slabych_punktow.pdf (Accessed: May 15, 2023).
  • Karsznia, K. et al. (2022) “The functionality assessment of geodetic monitoring systems for analyzing structural elements,” XXVII FIG Congress 2022: Volunteering for the future – Geospatial excellence for a better living. Available at: https://fig.net/resources/proceedings/fig_proceedings/fig2022/papers/ts04d/TS04D_karsznia_zaczek-peplinska_et_al_11414.pdf (Accessed: May 15, 2023).
  • Karsznia, K., Skalski, Z. and Czarnecki, L. (2010) “System ciągłego monitoringu deformacji odkrywkowych wyrobisk górniczych a bezpieczeństwo prowadzenia robót górniczych [A system for continuous monitoring of deformations in open-pit mine workings and the safety of mining works],” Przegląd Górniczy, 10(1055), pp. 167–171.
  • Karsznia, K. and Tarnowska, A. (2014) “Proposition of an integrated geodetic monitoring system in the areas at risk of landslides,” Challenges of Modern Technology, 4(3), pp. 33–40.
  • Kledyński, Z. (2011a) “Monitoring i diagnostyka budowli hydrotechnicznych. Cz. 1 [Monitoring and diagnostics of hydrotechnical structures. P. 1],” Nowoczesne Budownictwo Inżynieryjne, 2(35), pp. 54–61.
  • Kledyński, Z. (2011b) “Monitoring i diagnostyka budowli hydrotechnicznych. Cz. 2 [Monitoring and diagnostics of hydrotechnical structures. P. 2],” Nowoczesne Budownictwo Inżynieryjne, 3(36), pp. 36–38.
  • Królikowski, J. (2023) “Wyzwań od metra – Jak technologie geodezyjne pozwalają bezpiecznie drążyć II linię warszawskiego metra [Challenges from the metro – How geodetic technologies allow you to safely drill the second line of the Warsaw metro]. Interview with M. Wiliński,” Geodeta Magazyn Geoinformacyjny, 9. Available at: https://geoforum.pl/?menu=47064&page=edition2&id=1225&id_article=943&link=rozmawial-jerzy-krolikowski-wyzwan-od-metra-jak-technologie-geodezyjne-pozwalaja-bezpiecznie#edition (Accessed: April 18, 2023).
  • LEICA GEOMOS (2015) Are you interested in movements? – technical flyer. [Leaflet]. Heerbrugg: Sweiz.
  • LEICA GEOSYSTEMS AG (2018) Monitoring solutions – Assurance done right, technical flyer. [Leaflet]. Heerbrugg: Sweiz.
  • Li, Y. et al. (2021) “A comparison method for 3D laser point clouds in displacement change detection for Arch Dams,” ISPRS International Journal of Geo-Information, 10(3), 184. Available at: https://doi.org/10.3390/ijgi10030184.
  • Möser, M. et al. (2013) Auswertung geodätischer Überwachungsmessungen [Evaluation of geodetic monitoring measurements]. 2nd revised and expanded ed. Wichmann-Verlag.
  • Pasternak, G. et al. (2023) “Surface monitoring of an MSW landfill based on linear and angular measurements, TLS, and LIDAR UAV,” Sensors, 23(4), 1847. Available at: https://doi.org/10.3390/s23041847.
  • Prószyński, W. and Zaczek-Peplinska, J. (2005) “Kompleksowa modernizacja geodezyjnej sieci kontrolnej środkiem do podniesienia wiarygodności wyników pomiarów przemieszczeń [Comprehensive modernization of the geodetic control network as a means to increase the reliability of displacement measurement results],” XI Międzynarodowa Konferencja Technicznej Kontroli Zapór. Zakopane-Polana Zgorzelisko, 8–11 May 2005.
  • Ramos-Alcázar, L., Marchamalo-Sacristán, M. and Martínez-Marín, R. (2015) “Comparing dam movements obtained with Terrestrial Laser Scanner (TLS) data against direct pendulums records,” Revista Facultad de Ingeniería Universidad de Antioquia, 76, pp. 99–106. Available at: https://doi.org/10.17533/udea.redin.n76a12.
  • Rozporządzenie (2007) Rozporządzenie Ministra Środowiska z dnia 20 kwietnia 2007 r. w sprawie warunków technicznych, jakim powinny odpowiadać budowle hydrotechniczne i ich usytuowanie [Regulation of the Minister of the Environment of April 20, 2007 on the technical conditions to be met by hydrotechnical structures and their location],” Dziennik Ustaw, 86, poz. 579.
  • Sanso, F. and Gil, A.J. (2006) Geodetic deformation monitoring. Springer-Verlag GmbH.
  • Sieiński, E. and Śliwiński, P. (2020) Wytyczne wykonywania badań, pomiarów, ocen stanu technicznego oraz ocen stanu bezpieczeństwa budowli piętrzących wodę [Guidelines for carrying out tests, measurements, technical condition assessments and safety assessments of water damming structures]. Warszawa: Instytut Meteorologii i Gospodarki Wodnej – PIB.
  • Spreafico, M.C. et al. (2015) “Terrestrial remote sensing techniques to complement conventional geomechanical surveys for the assessment of landslide hazard: The San Leo case study (Italy),” European Journal of Remote Sensing, 48, pp. 639–660. Available at: https://doi.org/10.5721/EuJRS20154835.
  • Stumvoll, M.J., Schmaltz, E.M. and Glade, T. (2021) “Dynamic characterization of a slow-moving landslide system – Assessing the challenges of small process scales utilizing multi-temporal TLS data,” Geomorphology, 389, 107803. Available at: https://doi.org/10.1016/j.geomorph.2021.107803.
  • Świdziński, W. and Janicki, K. (2016) “Dobrze rozwinięty system monitoringu podstawą bezpiecznej eksploatacji obiektów hydrotechnicznych na przykładzie OUOW Żelazny Most [Well developed monitoring as a basis of safe operation of hydaulic structures based on Żelazny Most tailings pond],” Czasopismo Inżynierii Lądowej, Środowiska i Architektury Journal of Civil Engineering, Environment and Architecture, 33, 63(1/II/16), pp. 33–40. Available at: https://doi.org/10.7862/rb.2016.58.
  • Topcon (no date) Monitor construction sites and infrastructure for stability and risk. Topcon Positioning Systems, Inc. Available at: https://www.topconpositioning.com/surveying/monitoring (Accessed: April 18, 2023).
  • Trimble Geospatial (2023) Office Software: Trimble 4D Control. Available at: https://geospatial.trimble.com/en/products/software/trimble-4d-control (Accessed: April 18, 2023).
  • Ustawa (1994) “Ustawa z dnia 7 lipca 1994 r. Prawo budowlane [Construction law],” Dziennik Ustaw, 2023 [consolidated version].
  • Ustawa (2017) “Ustawa z dnia 20 lipca 2017 r. – Prawo wodne [Water law],” Dziennik Ustaw, 2017, poz. 1566 with amendments.
  • Wilde, K. et al. (2017) “Diagnostyka i monitoring nowego przekrycia Opery Leśnej w Sopocie [Diagnostics and monitoring of new textile roof of the Forest Opera in Sopot],” in XXVI Konferencja „Awarie budowlane” 2013, pp. 291–298. Available at: http://www.awarie.zut.edu.pl/files/ab2013/referaty/03_Diagnostyka_w_ocenie_bezpieczenstwa_konstrukcji/09_Wilde_K_i_inni_Diagnostyka_i_monitoring_nowego_przekrycia_Opery_Lesnej_w_Sopocie. pdf (Accessed: April 18, 2023).
  • Wolski, B. (2008) Monitoring metrologiczny obiektów geotechnicznych [Metrological monitoring of geotechnical objects]. Kraków: Wydaw. Politechniki Krakowskiej im. Tadeusza Kościuszki.
  • Woźniak, M. and Odziemczyk, W. (2017) “Investigation of stability of precise geodetic instruments used in deformation monitoring,” Reports on Geodesy and Geoinformatics, 104, pp. 79–90. Available at: https://doi.org/10.1515/rgg-2017-0017.
  • Yi, T.H. and Li, H.N. (2012) “Methodology developments in sensor placement for health monitoring of civil infrastructures,” International Journal Distributed Sensors Networks, 8(8), pp. 612–726. Available at: https://doi.org/10.1155/2012/612726.
  • Zaczek-Peplinska, J. (2007) Koncepcja modernizacji klasycznych sieci poziomych do wyznaczania przemieszczeń obiektów hydrotechnicznych [The concept of modernization of classic horizontal networks for determining displacements of hydrotechnical objects]. PhD Thesis. Warszawa: Politechnika Warszawska.
  • Zaczek-Peplinska, J. (2018) “Metodyka oceny stanu powierzchni betonowej budowli piętrzącej na podstawie analizy spektralnej wyników naziemnego skanowania laserowego [Methodology for assessing the condition of the surface of a concrete damming structure based on spectral analysis of the results of terrestrial laser scanning],” Prace Naukowe Politechniki Warszawskiej. Geodezja. Warszawa: PW.
  • Zaczek-Peplinska, J. and Kowalska, M. (2022) “Application of non-contact geodetic measurement techniques in dam monitoring,” Archives of Civil Engineering, 63, pp. 49–70. Available at: https://doi.org/10.24425/ace.2022.141873.
  • Zaczek-Peplinska, J., Pasik, M. and Popielski, P. (2013) “Geodetic monitoring of objects in the area of impact construction of tunnels and deep excavations – experiences and conclusions,” Acta Scientiarum Polonorum – Architectura, 12(2), pp. 17–31.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6bc1f26-035c-42b0-82e6-47e370cbcf7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.