PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A MZI-based optical neural network for image classification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, with the expansion of information, artificial intelligence technology has been developed and used in various fields. Among them, optical neural network provides a new type of special neural network accelerator chip solution, which has the advantages of high speed, high bandwidth, and low power consumption. In this paper, we construct an optical neural network based on Mach–Zehnder interferometer. The experimental results on the image classification of MNIST handwritten digitals show that the optical neural network has high accuracy, fast convergence and good scalability.
Czasopismo
Rocznik
Strony
97--104
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • School of Automation, Beijing Information Science and Technology University, Beijing, China
  • School of Computer Science Technology, Beijing Institute of Technology, Beijing, China
autor
  • School of Automation, Beijing Information Science and Technology University, Beijing, China
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
autor
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
  • College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
autor
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
autor
  • School of Automation, Beijing Information Science and Technology University, Beijing, China
autor
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
  • College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
  • College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
autor
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
  • College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
autor
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
  • College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
Bibliografia
  • [1] KRIZHEVSKY A., SUTSKEVER I., HINTON G.E., ImageNet classification with deep convolutional neural networks, Communications of the ACM 60(6), 2017: 84-90. https://doi.org/10.1145/3065386
  • [2] YOUNG T., HAZARIKA D., PORIA S., CAMBRIA E., Recent trends in deep learning based natural language processing, IEEE Computational Intelligence Magazine 13(3), 2018: 55-75. https://doi.org/10.1109/MCI.2018.2840738
  • [3] SILVER D., HUBERT T., SCHRITTWIESER J., ANTONOGLOU I., LAI M., GUEZ A., LANCTOT M., SIFRE L., KUMARAN D., GRAEPEL T., LILLICRAP T., SIMONYAN K., HASSABIS D., A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play, Science 362(6419), 2018: 1140-1144. https://doi.org/10.1126/science.aar6404
  • [4] HUGGINS W.J., MCCLEAN J.R., RUBIN N.C., JIANG Z., WIEBE N., WHALEY K.B., BABBUSH R., Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers, npj Quantum Information 7(1), 2021: 23. https://doi.org/10.1038/s41534-020-00341-7
  • [5] ZHU Z., ALBADAWY E., SAHA A., ZHANG J., HAROWICZ M.R., MAZUROWSKI M.A., Deep learning for identifying radiogenomic associations in breast cancer, Computers in Biology and Medicine 109, 2019: 85-90. https://doi.org/10.1016/j.compbiomed.2019.04.018
  • [6] PANG S., YANG X., Deep convolutional extreme learning machine and its application in handwritten digit classification, Computational Intelligence and Neuroscience, Vol. 2016, 2016: 3049632. https://doi.org/10.1155/2016/3049632
  • [7] ROCCO I., ARANDJELOVIĆ R., SIVIC J., Convolutional neural network architecture for geometric matching, IEEE Transactions on Pattern Analysis and Machine Intelligence 41(11), 2019: 2553-2567. https://doi.org/10.1109/TPAMI.2018.2865351
  • [8] XU Y., LI D., WANG Z., GUO Q., XIANG W., A deep learning method based on convolutional neural network for automatic modulation classification of wireless signals, Wireless Networks 25(7), 2019: 3735-3746. https://doi.org/10.1007/s11276-018-1667-6
  • [9] CORMIE-BOWINS E., A comparison of sequential and GPU implementations of iterative methods to compute reachability probabilities, Electronic Proceedings in Theoretical Computer Science 99, 2012: 20-34.
  • [10] WILLIAMS R.S., What’s Next? [The end of Moore’s law], Computing in Science & Engineering 19(2), 2017: 7-13. https://doi.org/10.1109/MCSE.2017.31
  • [11] SHEN Y., HARRIS N. C., SKIRLO S., PRABHU M., BAEHR-JONES T., HOCHBERG M., SUN X., ZHAO S., LAROCHELLE H., ENGLUND D., SOLJAČIĆ M., Deep learning with coherent nanophotonic circuits, Nature Photonics 11(7), 2017: 441-446. https://doi.org/10.1038/nphoton.2017.93
  • [12] HAMERLY R., BERNSTEIN L., SLUDDS A., SOLJAČIĆ M., ENGLUND D., Large-scale optical neural networks based on photoelectric multiplication, Physical Review X 9(2), 2019: 021032. https://doi.org/10.1103/PhysRevX.9.021032
  • [13] MARKOVIĆ D., MIZRAHI A., QUERLIOZ D., GROLLIER J., Physics for neuromorphic computing, Nature Reviews Physics 2(9), 2020: 499-510. https://doi.org/10.1038/s42254-020-0208-2
  • [14] SHASTRI B.J., TAIT A.N., FERREIRA DE LIMA T., PERNICE W.H.P., BHASKARAN H., WRIGHT C.D., PRUCNAL P.R., Photonics for artificial intelligence and neuromorphic computing, Nature Photonics 15(2), 2021: 102-114. https://doi.org/10.1038/s41566-020-00754-y
  • [15] ASHTIANI F., GEERS A.J., AFLATOUNI F., An on-chip photonic deep neural network for image classification, Nature 606(7914), 2022: 501-506. https://doi.org/10.1038/s41586-022-04714-0
  • [16] FU T., ZANG Y., HUANG Y., DU Z., HUANG H., HU C., CHEN M., YANG S., CHEN H., Photonic machine learning with on-chip diffractive optics, Nature Communications 14(1), 2023: 70. https://doi.org/10.1038/s41467-022-35772-7
  • [17] ZHANG H., GU M., JIANG X.D., THOMPSON J., CAI H., PAESANI S., SANTAGATI R., LAING A., ZHANG Y., YUNG M.H., SHI Y.Z., MUHAMMAD F.K., LO G.Q., LUO X.S., DONG B., KWONG D.L., KWEK L.C., LIU A.Q., An optical neural chip for implementing complex-valued neural network, Nature Communications 12(1), 2021: 457. https://doi.org/10.1038/s41467-020-20719-7
  • [18] MILLER D.A.B., Self-aligning universal beam coupler, Optics Express 21(5), 2013: 6360-6370. https://doi.org/10.1364/OE.21.006360
  • [19] RECK M., ZEILINGER A., BERNSTEIN H.J., BERTANI P., Experimental realization of any discrete unitary operator, Physical Review Letters 73(1), 1994: 58-61. https://doi.org/10.1103/PhysRevLett.73.58
  • [20] ANNONI A., GUGLIELMI E., CARMINATI M., FERRARI G., SAMPIETRO M., MILLER D.A.B., MELLONI A., MORICHETTI F., Unscrambling light—automatically undoing strong mixing between modes, Light: Science & Applications 6(12), 2017: e17110. https://doi.org/10.1038/lsa.2017.110
  • [21] PAI S., BARTLETT B., SOLGAARD O., MILLER D.A.B., Matrix optimization on universal unitary photonic devices, Physical Review Applied 11(6), 2019: 064044. https://doi.org/10.1103/PhysRevApplied.11.064044
  • [22] SPENGLER C., HUBER M., HIESMAYR B.C., Composite parameterization and Haar measure for all unitary and special unitary groups, Journal of Mathematical Physics 53(1), 2012: 013501. https://doi.org/10.1063/1.3672064
  • [23] MILLER D.A.B., Perfect optics with imperfect components, Optica 2(8), 2015: 747-750. https://doi.org/10.1364/OPTICA.2.000747
  • [24] CLEMENTS W.R., HUMPHREYS P.C., METCALF B.J., KOLTHAMMER W.S., WALMSLEY I.A., Optimal design for universal multiport interferometers, Optica 3(12), 2016: 1460-1465. https://doi.org/10.1364/OPTICA.3.001460
  • [25] LECUN Y., BOTTOU L., BENGIO Y., HAFFNER P., Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11), 1998: 2278-2324. https://doi.org/10.1109/5.726791
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6b9cffe-5c0f-48e6-bc4f-a0211affe55e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.