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Abstract. The purpose of this paper is to study the oscillatory properties of solutions
to a class of delay differential equations of even order. We focus on criteria that exclude
decreasing positive solutions. As in this paper, this type of solution emerges when
considering the noncanonical case of even equations. By finding a better estimate of the
ratio between the Kneser solution with and without delay, we obtain new constraints
that ensure that all solutions to the considered equation oscillate. The new findings
improve some previous findings in the literature.
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1. INTRODUCTION

Since the inception of calculus and the emergence of differential equations, they have
been used to model and describe various life and technological problems that appear in
engineering, physics, chemistry, biology and other sciences. Delay differential equations
(DDE) are a preferred method for describing phenomena, due to the fact that they take
into account the temporal memory of phenomena. Understanding and investigating
these phenomena, however, is hampered by the difficulty of solving the equations that
come from the modeling of these processes. As a result, the qualitative theory makes
a significant contribution to finding a solution to this issue and enabling the study of
the qualitative aspects of equations. Oscillation theory, which deals with oscillatory,
non-oscillatory, asymptotic behavior and the distribution of zeros for solutions of
differential equations, is one of the disciplines of qualitative theory.

Several vital applications of DDEs have appeared in the various natural sciences,
population dynamics and technology, see [9]. As a result of the applications of these
equations, the asymptotic and oscillatory behavior of these equations has sparked
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significant research work; see, for instance, the monographs [1, 4, 10, 19]. In partic-
ular, the qualitative properties of different classes of Emden–Fowler DDEs have
many applications in engineering and physics (e.g., many real-world problems involve
Emden–Fowler DDEs, such as the study of porous medium difficulties, p-Laplace
equations, and so on); see [5, 11,12].

In this study, we consider the following class of DDEs of even-order:
(
b · (υ(n−1))κ

)′
+ q · (ϕ ◦ υ ◦ σ) = 0, t ≥ t0, (1.1)

where n ≥ 4 is an even integer, κ ∈ Q+
odd := {x/y : x and y are odd integers} and

κ∗ = (κ/κ+ 1)κ+1. Throughout this study, we assume that:
(H1) b ∈ C1([t0,∞), (0,∞)

)
, q, σ ∈ C

(
[t0,∞),R

)
, b′(t) ≥ 0, q(t) ≥ 0, σ(t) ≤ t, and

limt→∞ σ(t) = ∞,
(H2) the function ϕ ∈ C (R,R) satisfies ϕ(υ)/υβ ≥ k > 0 for υ ̸= 0 and β ∈ Q+

odd,
(H3) ηm(t0) < ∞, where

η0(t) :=
∞∫

t0

b−1/κ(h)dh

and

ηm(t) :=
∞∫

t

ηm−1(h)dh, for m = 1, 2, . . . , n− 2.

For a solution of (1.1) we denote a function υ in Cn−1([t∗,∞)) for some t∗ ≥ t0,
which b(υ(n−1))κ ∈ C1([t∗,∞)) and satisfies (1.1) on [t∗,∞). We take into account
these solutions υ of (1.1) such that sup {|υ(s)| : s ≥ tυ} > 0 for every tυ in [t∗,∞).

A solution υ of (1.1) is said to be nonoscillatory if it is eventually positive or
eventually negative; otherwise, it is said to be oscillatory. We define the class k as

k :=
{
υ(t) : there exists t1 ≥ t0 such that υ(i)(t)υ(i+1)(t) < 0

for i = 0, 1, . . . , n− 2, and t ≥ t1

}
.

In the following, we review some of the previous results that were the motivation
for this study.

Zhang et al. [21] studied the asymptotic behavior of (1.1) in the noncanonical case,
that is when ∞∫

t0

b−1/κ(h)dh < ∞.

Without taking into account the sign of first derivative υ′, the results in [21] ensured
that all nonoscillatory solutions of equation (1.1) tend to zero. As an improvement of
results in [21], Zhang et al. [20] proved that if β ≤ κ and

lim sup
t→∞

t∫

t0

(
Mβ−κq(h)bκ

n−3(h) − κκ+1

(κ+ 1)κ+1

(
b′

n−3(h)
)κ+1

bn−3 (h) bκ
n−4(h)

)
dh = ∞,



New oscillation constraints for even-order delay differential equations 457

then k = ∅, where M > 0 and bp(t) := 1
p!
∫∞

t
(s− t)pη0(s)ds. Combining the results

obtained in [20,21], it is easy to attain oscillation of all solutions of (1.1).
On the other hand, by imposing the following conditions

ϕ′(υ) ≥ 0 and − ϕ(−xυ) ≥ ϕ(xυ) ≥ ϕ(x)ϕ(υ), for xυ > 0.

Baculíková et al. [3] studied the oscillatory properties of (1.1). They used
the comparison with first-order DDEs and proved that if that there exists
ζ1 ∈ C ([t0,∞)) such that ζ ′(t) > 0, ζ(t) > t, ζn−2(σ(t)) < t and

lim inf
t→∞

t∫

ζn−2(σ(t))

b−1/κ(h)




h∫

t0

q(s)ds




1/κ

ϕ1/κ (Jn−2(σ(h))) dh > 1
e ,

then k = ∅, where

ζi+1(t) := ζ (ζi(t)) , Ji+1(t) :=
ζ(t)∫

t

Ji(h)dh and J1(t) := ζ1(t) − t.

For the works that focused on studying the oscillation of the even-order equations
in the canonical case, that is,

∞∫

t0

b−1/κ(h)dh = ∞,

see, for example, [8, 14,16].
While proving the main results, we will need the following lemma.

Lemma 1.1 ([17]). Let 𭟋 ∈ Cn ([t0,∞), (0,∞)). If 𭟋(n) is eventually of one sign,
then there exist a t∗ such that t∗ ≥ t0 and a γ ∈ Z, 0 ≤ γ ≤ n, with n + γ even for
𭟋(n)(t) ≥ 0, or n+ γ odd for 𭟋(n)(t) ≤ 0 such that

γ > 0 implies 𭟋(κ)(t) > 0 for 0 ≤ κ ≤ γ − 1,

and
γ ≤ n− 1 implies (−1)γ+κ𭟋(κ)(t) > 0 for γ ≤ κ ≤ n− 1,

eventually.

In this study, we provide new criteria that ensure that k = ∅. Our results take into
account the influence of the delay argument σ(t) that has been neglected in related
results. Furthermore, the technique we have used does not rely on the traditional form
(lim sup(·) = ∞) and consider all cases of α and β. The criteria reported in this study
improve, generalize, and complement those in [3, 15,20,21].
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2. MAIN RESULTS

The following lemma is obtained by applying Lemma 1.1, and taking into consideration
that n is even and the fact that

(
b ·
(
υ(n−1))κ

)′
≤ 0 for every positive solution υ.

Moreover, for n = 4, the following lemma is explained in detail in [18].
Lemma 2.1. Suppose that υ is a positive solution of (1.1). Then there are three
possible classes for υ:
(i) υ′ > 0, υ(n−1) > 0 and υ(n) < 0,
(ii) υ′ > 0, υ(n−2) > 0 and υ(n−1) < 0,
(iii) (−1)ιυ(ι) > 0 for ι = 1, 2, . . . , n− 1.
Lemma 2.2. Assume that υ ∈ k. Then υβ−κ(t) ≥ θ(t), where

θ(t) =
{
mβ−κ

1 , if κ ≥ β,

m2η
β−κ
n−2 (t), if κ < β,

and m1,m2 are positive constants. Moreover, if

∞∫

t0


 1
b(s)

s∫

t1

q(h)dh




1/κ

ds = ∞, (2.1)

then limt→∞ υ(t) = 0.
Proof. Let υ ∈ k. Suppose that κ ≥ β. Taking into account the facts that υ > 0 and
υ′ < 0, there exists an m1 > 0 such that υ(t) ≤ m1, and hence υβ−κ(t) ≥ mβ−κ

1 .
Next, let κ < β. From (1.1), we get

(
b
(
υ(n−1))κ

)′
≤ 0, and so

b(υ(n−1))κ ≤ −M < 0. Thus, by integrating the last inequality from t to ∞, we have
that

υ(n−2)(t) ≥ M1/κη0(t). (2.2)
Integrating (2.2) n− 2 times from t to ∞ and using (iii), we get

υβ−κ(t) ≥ M (β−κ)/κηβ−κ
n−2 (t).

Now, since υ > 0 and υ′ < 0, we obtain that limt→∞ υ(t) = c ≥ 0. We claim that
limt→∞ υ(t) = 0. Assuming the contrary, we let c > 0. Thus, there exists an t1 ≥ t0
with υ(σ(t)) ≥ c for t ≥ t1, and then

−
(
b(υ(n−1))κ

)′
≥ kq ·

(
υβ ◦ σ

)
≥ kcβ · q, (2.3)

for t ≥ t1. Integrating (2.3), twice, from t1 to t and using (c), we obtain

υ(n−1)(t) ≤ −(kcβ)1/κ


 1
b(t)

t∫

t1

q(h)dh




1/κ
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and

υ(n−2)(t) ≤ υ(n−2)(t1) − (kcβ)1/κ

t∫

t1


 1
b(s)

s∫

t1

q(h)dh




1/κ

ds.

From (2.1), we see that limt→∞ υ(n−2)(t) = −∞, which contradicts υ(n−2)(t) > 0.
Thus, the proof is complete.

Lemma 2.3. Assume that υ ∈ k and (2.1) holds. If there exists a constant δ ≥ 0 such
that

θ1/κ(t)ηn−2(t)


k

t∫

t0

q(h)dh




1/κ

≥ δ, (2.4)

then
υ′(t) ≤ b1/κ(t)υ(n−1)(t)ηn−3(t) (2.5)

and
d
dt

(
υ(t)

ηδ
n−2(t)

)
≤ 0. (2.6)

Proof. Let υ ∈ k. From (1.1), we see that b(t)
(
υ(n−1)(t)

)κ is a decreasing function,
and so

υ(n−2)(s) ≤ υ(n−2)(t) + b1/κ(t)υ(n−1)(t)
s∫

t

1
b1/κ(h)dh. (2.7)

Taking lims→∞ on (2.7), we get

υ(n−2)(t) ≥ −b1/κ(t)υ(n−1)(t)η0(t). (2.8)

Integrating (2.8) n− 3 times from t to ∞ and taking into account (iii), we arrive at

υ′(t) ≤ b1/κ(t)υ(n−1)(t)ηn−3(t).

Integrating (1.1) from t1 to t, we find

b(t)
(
υ(n−1)(t)

)κ

≤ b(t1)
(
υ(n−1)(t1)

)κ

− k

t∫

t1

q(h)υβ(σ(h))dh

≤ b(t1)
(
υ(n−1) (t1)

)κ

− kυβ(σ(t))
t∫

t0

q(h)dh

+ kυβ(σ(t))
t1∫

t0

q(h)dh.

(2.9)
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Using Lemma 2.2, we get that limt→∞ υ(t) = 0. Thus, there is t2 ≥ t1 such that

b(t1)
(
υ(n−1) (t1)

)κ

+ kυβ(σ(t))
t1∫

t0

q(h)dh < 0, for every t ≥ t2.

It follows from (2.9) that

(
b(υ(n−1))κ

)
(t) ≤ −kυβ (σ(t))

t∫

t0

q(h)dh

≤ −kυβ−κ(t)υκ(t)
t∫

t0

q(h)dh

≤ −kθ(t)υκ(t)
t∫

t0

q(h)dh.

(2.10)

Next, we see that
d
dt

(
υ

ηδ
n−2

)
=
ηδ

n−2υ
′ + δηδ−1

n−2ηn−3υ

η2δ
n−2

. (2.11)

Combining (2.5) and (2.10), we get

υ′ ≤ −kθ1/κηn−3υ




t∫

t0

q(h)dh




1/κ

.

This implies

ηδ
n−2υ

′ + δηδ−1
n−2ηn−3υ ≤ −θ1/κηn−3η

δ
n−2υ


k

t∫

t0

q(h)dh




1/κ

+ δηδ−1
n−2ηn−3υ

=


−θ1/κηn−2


k

t∫

t0

q(h)dh




1/κ

+ δ


 ηδ−1

n−2ηn−3υ.

It follows from (2.4) that

ηδ
n−2υ

′ + δηδ−1
n−2ηn−3υ ≤ 0,

which with (2.11) implies that
(
υ/ηδ

n−2
)′ ≤ 0. Hence, the proof is complete.
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Theorem 2.4. Suppose that (2.1) holds. If there exist a function

ρ ∈ C1 ([t0,∞), (0,∞))

and a constant δ ≥ 0 such that (2.4) holds and

lim sup
t→∞

ηκ
n−2(t)
ρ(t)

t∫

t0

(
ρ(h)Φ(h) − 1

(κ+ 1)κ+1
(ρ′(h))κ+1

ρκ(h)ηκ
n−3(h)

)
dh > 1, (2.12)

then k = ∅, where

Φ(t) := kθ(t)q(t)
(
ηn−2(σ(t))
ηn−2(t)

)δβ

.

Proof. Assuming the contrary, we let υ ∈ k. Using Lemma 2.3, we have that (2.5) and
(2.6) hold. Integrating (2.6) from σ to t yields

υ(σ(t)) ≥
(
ηn−2(σ(t))
ηn−2(t)

)δ

υ(t),

which with (1.1) gives

(
b(υ(n−1))κ

)′
≤ −kq

(
ηn−2(σ)
ηn−2

)δβ

υβ . (2.13)

Next, we define the function

ψ := ρ

(
b

(
υ(n−1)

υ

)κ

+ 1
ηκ

n−2

)
. (2.14)

Thus, ψ(t) > 0. From (2.5), (2.13) and (2.14), we obtain

ψ′ ≤ ρ′

ρ
ψ − k

(
ηn−2(σ)
ηn−2

)δβ

θρq − κηn−3
ρ1/κ

(
ψ − ρ

ηκ
n−2

)κ+1
κ

+ ρ
κηn−3

ηκ+1
n−2

.

Using Lemma 1.2 in [15] with D = ρ′/ρ, E = κηn−3ρ
−1/κ, ϕ = ρ/ηκ

n−2 α = κ and
ν = ψ, we find

ψ′ ≤ (ρ′)κ+1

(κ+ 1)κ+1
ρκηκ

n−3
− ρΦ +

(
ρ

ηκ
n−2

)′
. (2.15)

Integrating (2.15) from t1 to t, we are led to

t∫

t1

(
ρ(h)Φ(h) − (ρ′(h))κ+1

(κ+ 1)κ+1
ρκ(h)ηκ

n−3(h)

)
dh ≤

(
ρ(h)

ηκ
n−2(h) − ψ(h)

)∣∣∣∣
t

t1

,
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which follows from (2.14) that

t∫

t1

(
ρ(h)Φ(h) − (ρ′(h))κ+1

(κ+ 1)κ+1
ρκ(h)ηκ

n−3(h)

)
dh ≤

(
ρ(h)b(h)

(
υ(n−1)(h)
υ(h)

)κ
)∣∣∣∣∣

t1

t

.

(2.16)

Integrating (2.5) from t to ∞ provides

υ(t) ≥ −b1/κ(t)υ(n−1)(t)ηn−2(t), (2.17)

which with (2.16), gives

t∫

t1

(
ρ(h)Φ(h) − (ρ′(h))κ+1

(κ+ 1)κ+1
ρκ(h)ηκ

n−3(h)

)
dh ≤ ρ(t)

ηκ
n−2(t) .

Multiplying thus inequality by ηκ
n−2/ρ and then taking lim supt→∞, we are led to

a contradiction. Hence, the proof is complete.

Theorem 2.5. Suppose that there is a δ ≥ 0 such that (2.1) and (2.4) hold.
If the differential equation

(
1

ηκ
n−3(t) (υ′(t))κ

)′
+ Φ(t)υκ(t) = 0 (2.18)

is oscillatory, then k = ∅.

Proof. Assuming the contrary, we let υ ∈ k. Proceeding as in the proof of Theorem 2.4,
we get that (2.5), (2.13) and (2.17) hold. Next, we set

w := b

(
υ(n−1)

υ

)κ

< 0. (2.19)

From (2.13) and (2.19), we conclude that

w′ ≤ −k
(
ηn−2(σ)
ηn−2

)δβ

θq − κ
b(υ(n−1))κ

υκ+1 υ′,

which, in view of (2.5), gives

w′ + Φ + κηn−3w
(κ+1)/κ ≤ 0. (2.20)

From [2], if there is a w ∈ C ([t1,∞) ,R) which satisfies (2.20) for t ≥ t1 ≥ t0,
then equation (2.18) is non-oscillatory, which is a contradiction. Hence, the proof is
complete.

Under the assumption ηn−2(t0) < ∞, in view of [6, Theorem 3] and [7, Theorem 2.3],
we obtain the following criteria for oscillation of (1.1)
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Corollary 2.6. Suppose that there is a δ ≥ 0 such that (2.1) and (2.4) hold.
If ηn−2(t0) < ∞ and

lim sup
t→∞

ηκ
n−2(t)

t∫

t0

Φ(τ)dτ > 1 (2.21)

or

lim inf
t→∞

1
ηn−2(t)

∞∫

t

ηκ+1
n−2(h)Φ(h)dh > κ∗ (2.22)

hold, then k = ∅.

Remark 2.7. Combining Theorem 2.5 and the results reported in the paper [5],
one can derive various oscillation criteria for equation (1.1). The details are left to
the reader.

Remark 2.8. Since m1 and m2 are arbitrary, the conditions that include them must
be fulfilled for all their values.

3. APPLICATIONS

Combining the results obtained in [21] with existing in the previous section, we provide
a new criterion for oscillation of all solutions of equation (1.1).

Theorem 3.1. If

lim inf
t→∞

t∫

σ(t)

q(h)
(
σn−1(h)

)κ

b(σ(h)) dh > ((n− 2)!)κ

e (3.1)

and

lim sup
t→∞

t∫

t0

(
q(h)

(
µ1η0(h)σn−2(h)

(n− 2)!

)κ

− κκ+1

(κ+ 1)κ+1
1

η0(h)b1/κ(h)

)
dh = ∞, (3.2)

for some µ1 ∈ (0, 1), then every non-oscillatory solution of (1.1) tends to zero.

Proof. The proof of this theorem is the same as that of [21, Corollary 2.1] when
ϕ(υ) = υκ, and so we omit it.

Theorem 3.2. Suppose that ϕ(υ) := υκ, (3.1) and (3.2) hold. If there exist a function
σ ∈ C1 ([t0,∞), (0,∞)) and a constant δ ≥ 0 such that (2.4) and (2.12) hold, then
every solution of (1.1) is oscillatory.

Proof. Assuming the contrary, υ is a non-oscillatory solution of (1.1). Therefore, that
there exists an t1 ∈ [t0,∞) with υ and υ ◦ σ are positive for t ≥ t1. It follows from
Lemma 2.1 that υ satisfies one of the cases (i)–(iii). Now, from Theorem 3.1, we see
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that the cases (i) and (ii) contradict conditions (3.1) and (3.2), respectively. Then, we
have that (iii) holds, that is, υ ∈ k. From Theorem 2.4, we arrive at a contradiction
with (2.12). Hence, the proof is complete.

Theorem 3.3. Suppose that ϕ(υ) := υκ, (3.1) and (3.2) hold. If there exist a function
σ ∈ C1 ([t0,∞), (0,∞)) and a constant δ ≥ 0 such that (2.4) and (2.22) hold, then all
solutions of equation (1.1) are oscillatory.

Example 3.4. Consider the delay differential equation

(eκt(υ′′′(t))κ)′ + q0eκtυκ (t− σ0) = 0, t ≥ t0, (3.3)

where q0, σ0 > 0. We note that β = κ, b (t) = eκt, q(t) = q0eκt, ϕ(υ) = υκ and
σ (t) = t− σ0. Thus, we conclude that

ηι(t) = e−t for all ι = 0, 1, 2.

Then, (3.1) and (3.2) are satisfied. Now, if we choose δ := (q0/κ)1/κ and ρ(t) = e−κt,
then we see that (2.4) is satisfied. Moreover, (2.12) holds if

q0eσ0δκ >
κκ+1

(κ+ 1)κ+1 . (3.4)

Thus, from Theorem 3.2, (3.3) is oscillatory if (3.4) holds. Moreover, we can obtain
the same criterion (3.4) by using Theorem 3.3.

Remark 3.5. By using [21, Corollary 2.1], (3.3) is oscillatory when q0 ∈ (κ∗,∞).
Whereas, condition (3.4) becomes q0 ∈

(
κ∗e−σ0δκ,∞

)
. Since eσ0δκ ≥ 1, we have that

Theorem 3.2 presents an improved result for oscillation of equation (3.3). Furthermore,
condition (3.4) considers the impact of σ(t), which has been neglected in the previous
studies [15,21].

Remark 3.6. Set κ = 1 and σ0 = 1 in (3.3), [3, Corollary 4] showed that equation
(3.3) is oscillatory when q0 > 25/e. However, condition (3.4) reduces to q0 > 0.20389,
which is better for testing the oscillation of (3.3).

4. CONCLUSION

This paper is concerned with creating improved criteria that ensure that there are no
decreasing solutions to a class of even-order delay differential equations. Using these
criteria, we obtained new oscillation constraints for the considered equation. Through
an example and appropriate remarks, we also noted that the new criterion provides
sharper results for oscillation than the related previous results in [3, 15, 20, 21]. It will
be interesting to extend these results to the neutral delay differential equations of
even-order; see [5, 13] for more details.
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