PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurements of transient thermal impedance of SiC BJT

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Pomiary przejściowej impedancji termicznej tranzystora SiC BJT
Języki publikacji
EN
Abstrakty
EN
The paper presents the computer-aided method of measuring of the transient thermal impedance of SiC BJTs. The advantages of this method are illustrated by means of measurements of the silicon carbide BJT operating at the different cooling conditions.
PL
W pracy przedstawiono komputerową metodę pomiaru przejściowej impedancji termicznej tranzystora SiC BJT. Zalety tego sposobu zilustrowano za pomocą pomiarów tranzystora SiC BJT pracującego w różnych warunkach chłodzenia.
Rocznik
Strony
178--181
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Gdynia Maritime University, Department of Marine Electronics, 83 Morska Str., 81225 Gdynia
  • Gdynia Maritime University, Department of Marine Electronics, 83 Morska Str., 81225 Gdynia
  • Gdynia Maritime University, Department of Marine Electronics, 83 Morska Str., 81225 Gdynia
Bibliografia
  • [1] She X., Huang A.Q., Lucía Ó., Ozpineci B., Review of Silicon Carbide Power Devices and Their Applications, IEEE Transactions on Industrial Electronics, Vol. 64, Issue 10, pp. 8193-8205,2017
  • [2] Wang J., Liang S. Deng L., Yin X., Shen Z.J., An Improved SPICE Model of SiC BJT Incorporating Surface Recombination Effect, IEEE Transactions on Power Electronics Vol. 34 , Issue 7, pp. 6794 - 6802, 2019
  • [3] Liang S., Wang J., Peng Z., Chen G., Yin X. Shen Z.J., Deng L., A Modified Behavior SPICE Model for SiC BJT, Annual IEEE Applied Power Electronics Conference and Exposition, Proceedings Paper, pp. 238-243, 2018
  • [4] Patrzyk J., Bisewski D., Measurements and simulations of silicon carbide current-controlled transistors, 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition, Poland, 2017
  • [5] Szelagowska J., Characteristics and parameters of power SiC SJT, Przegląd Elektrotechniczny, Vol. 94, Issue 8, pp. 75-78, 2018
  • [6] Górecki K., Zarębski J., Modeling the Influence of Selected Factors on Thermal Resistance of Semiconductor Devices, IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 4, Issue 3 , 2014
  • [7] Bargieł K., Bisewski D., Zarębski J, Modelling of SiC-JFET in PSPICE, Przegląd Elektrotechniczny, Vol.95, Issue 1, pp.231- 234, 2019
  • [8] Górecki K., Ptak P., New dynamic electro-thermo-optical model of power LEDs, MicroElectronics Reliability, Vol. 91, pp. 1-7
  • [9] Górecki K., Górecki P., A new form of non-linear compact thermal model of the IGBT, 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPEPOWERENG 2018), Qatar
  • [10] Zarębski J., Dąbrowski J., Non-isothermal Characteristics of SiC Power Schottky Diodes, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Vols 1-3, Pages: 1363-1367, 2008, Italy
  • [11] Smirnov V.I., Sergeev V.A., Gavrikov A.A.,Shorin A.M., Thermal Impedance Meter for Power MOSFET and IGBT Transistors, IEEE Transactions On Power Electronics, Vol. 33, Issue 7, pp.6211-6216, 2018
  • [12] Blackburn D. L., Oettinger F. F., Transient Thermal Response Measurement of Power Transistors, IEEE Transactions on Industrial Electronics and Control Instrumentation, Vol. IECI-22, No. 2, 1975, pp. 134-141.
  • [13] Górecki K., Górecki P., Zarębski J., Measurements of Parameters of the Thermal Model of the IGBT Module, IEEE Transactions on Instrumentation and Measurement (Early Access), pp.1-12, 2019
  • [14] Janicki M., Sarkany Z., Napieralski A., Impact of nonlinearities on electronic device transient thermal responses, Microelectronics Journal, Vol. 45, Issue 12, pp.1721-1725, 2014
  • [15] Szekely V., A New Evaluation Method Thermal Transient Measurements Results, Microelectronics Journal, Vol. 28, No. 3, 1997, pp.277-292
  • [16] Starzak Ł., Stefanskyi A., Zubert M., Napieralski A., Improvement of an electro-thermal model of SiC MPS diodes, IET Power Electronics, Vol. 11, Issue 4, pp. 660-667, 2018
  • [17] Du X., Zhang J., Zheng S., Tai H-M., Thermal Network Parameter Estimation Using Cooling Curve of IGBT Module, IEEE Transactions on Power Electronics, Vol. 34, Issue 8, pp. 7957 - 7971, 2019
  • [18] https://www.mccdaq.com/usb-data-acquisition/USB-1608GSeries. aspx
  • [19] http://www.dacpol.eu/pl/elementy-polprzewodnikowe-zweglika- krzemu/product/elementy-polprzewodnikowe-zweglika- krzemu-1224
  • [20] Zarębski J., Górecki K., Parameters Estimation of the D.C. electrothermal model of the bipolar transistor, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 15, Issue 2, pp. 181-194, 2002
  • [21] Bąba S., Zelechowski M., Jasiński M., Estimation of thermal network models parameters based on particle swarm optimization algorithm, Conference Paper, CPE-POWERENG 2019 13th International Conference on Compatibility, Power Electronics and Power Engineering, 2019
  • [22] Riccio M., De Falco G., Mirone P., Maresca L., Tedesco M., Breglio G., Irace A., SPICE Modeling of Reverse-Conducting IGBTs Including Self-Heating Effects, IEEE Transactions on Power Electronics, Vol. 32 , Issue 4 ,pp. 3088 - 3098, 2017
  • [23] Du B., Hudgins J.L., Santi E., Bryant A.T., Palmer P.R., Mantooth H.A., Transient Electrothermal Simulation of Power Semiconductor Devices, IEEE Transactions on Power Electronics, Vol. 25, Issue 1, pp. 237-248, 2010
  • [24] Boglietti A., Carpaneto E., Cossale M., Vaschetto S., Stator- Winding Thermal Models for Short-Time Thermal Transients: Definition and Validation, IEEE Transactions on Industrial Electronics Vol. 63 , Issue 5, pp. 2713 - 2721, 2016
  • [25] Bonyadi R., Alatise O., Jahdi S., Hu J., Gonzalez J.A.O., Ran L., Mawby P.A., Compact Electrothermal Reliability Modeling and Experimental Characterization of Bipolar Latchup in SiC and CoolMOS Power MOSFETs, IEEE Transactions on Power Electronics, Vol. 30 , Issue 12, pp. 6978 - 6992, 2015
  • [26] Bagnoli P.E., Casarosa C., Ciampi M. and Dallago E., Thermal Resistance Analysis by Induced Transient Method for Power Electronic Devices Thermal Characterization - Part I: Fundamentals and theory, IEEE Transactions on Power Electronics, Vol. 13, no. 6, , pp.1208-1219, 1998
  • [27] Masana F.N., Extraction of structural information from thermal impedance measurements in time domain, Proceedings of the 18th International Conference Mixed Design if Integrated Circuits & Systems MIXDES 2011, Gliwice, pp.398-402
  • [28] Mawby P.A., Igic P.M., and Towers M.S., Physically based compact device models for circuit modelling applications, Microelectronics Journal, Vol.32, pp.298-302, 2001
  • [29] d'Alessandro V., Pio Catalano A., Codecasa L., Moser B., Zampardi P.J., Thermal Coupling in Bipolar Power Amplifiers toward Dynamic Electrothermal Simulation, 2018 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)
  • [30] Sheng K., Maximum Junction Temperatures of SiC Power Devices, IEEE Transactions on Electron Devices, Vol. 56, Issue 2, pp. 337-342, 2009
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6b4de18-43f7-493f-a069-b49487db608e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.