PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of crack angle and concrete strength on the dynamic fracture behavior of rock-based layered material containing a pre-existing crack

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dynamic fracture behavior of rock-based layered material containing a pre-existing crack was investigated, which is crucial to evaluate the stability of rock-based systems. Dynamic tests on semi-circular bend (SCB) samples were conducted with a split-Hopkinson Pressure Bar (SHPB) system and the cracking process was collected using digital image correlation (DIC). An MTS Insight 30 electromechanical test equipment was adopted to perform static fracture experiment for comparison. Different typical fracture modes were classified: interfacial fracture, combined mode of tensile–shear fracture, and combined mode of compression–shear fracture. Regardless of static load or dynamic load, the fracture mode is controlled by crack dip angle, and the peak load is proportional to crack dip angle. The increase in concrete strength makes a strengthening impact on the bearing capacity of SCB sample, which can prevent the propagation of secondary cracks in the concrete. Both static and dynamic fracture toughness are significantly affected by dip angle. The difference between static and dynamic fracture toughness of mixed-mode reduces initially and subsequently increases with an increase in dip angle. Furthermore, comparing with static fracture toughness, dynamic fracture toughness substantially depends stronger on dip angle. The dip angle and concrete strength have an obvious effect on the fracture resistance.
Rocznik
Strony
art. no. e198, 2023
Opis fizyczny
Bibliogr. 62 poz., fot., rys., wykr.
Twórcy
autor
  • School of Resources and Safety Engineering, Central South University, 932 South Lushan Road, Changsha 410083, China
autor
  • School of Resources and Safety Engineering, Central South University, 932 South Lushan Road, Changsha 410083, China
autor
  • School of Civil Engineering, Sun Yat-sen University, Zhuhai 519082, China
autor
  • School of Resources and Safety Engineering, Central South University, 932 South Lushan Road, Changsha 410083, China
autor
  • School of Resources and Safety Engineering, Central South University, 932 South Lushan Road, Changsha 410083, China
autor
  • School of Resources and Safety Engineering, Central South University, 932 South Lushan Road, Changsha 410083, China
autor
  • School of Resources and Safety Engineering, Central South University, 932 South Lushan Road, Changsha 410083, China
Bibliografia
  • 1. Barrett SVL, McCreath DR. Shotcrete support design in blocky ground: towards a deterministic approach. Tunn Undergr Space Technol. 1995;10(1):79–89.
  • 2. Lam TSK, Johnston IW. Shear behaviour of regular triangular concrete/rock joints—analysis. J Geotech Eng Div ASCE. 1989;115(5):711–27.
  • 3. Ulfberg A, Gonzalez-Libreros J, Das O, Bista D, Westberg Wilde M, Johansson F, et al. Probabilistic finite element analysis of failures in concrete dams with large asperities in the rock– concrete interface. Arch Civ Mech Eng. 2023;23(2):109.
  • 4. Fishman YA. Features of shear failure of brittle materials and concrete structures on rock foundations. Int J Rock Mech Min Sci. 2008;45(6):976–92.
  • 5. Alneasan M, Behnia M, Bagherpour R. Analytical investigations of interface crack growth between two dissimilar rock layers under compression and tension. Eng Geol. 2019;259:105–88.
  • 6. Huang S, Yan E, Fang K, Li X. Effects of binder type and dos- age on the mode I fracture toughness of cemented paste backfill- related structures. Constr Build Mater. 2021;270: 121854.
  • 7. Sujatha V, Kishen JMC. Energy release rate due to friction at bi-material interface in dams. J Eng Mech. 2003;129:793–800.
  • 8. Fishman YA. Stability of concrete retaining structures and their interface with rock foundations. Int J Rock Mech Min Sci. 2009;46(6):957–66.
  • 9. Zhang AB, Wang BL. An opportunistic analysis of the interface crack based on the modified interface dislocation method. Int J Solids Struct. 2013;50(1):15–20.
  • 10. Dang H, Zhao M, Fan C, Chen Z. Extended displacement discontinuity method for an interface crack in a three-dimensional transversely isotropic piezothermoelastic bi-material. Part 2: numerical method. Int J Solids Struct. 2017;109:199–209.
  • 11. Zhou L, Zhu Z, Dong Y, Niu C. Investigation of dynamic frac- ture properties of multi-crack tunnel samples under impact loads. Theor Appl Fract Mech. 2020;109: 102733.
  • 12. Wang X, Zhu Z, Zhou L, Ma L, Zhou C, Wang Z, et al. Study on the effects of joints orientation and strength on failure behavior in shale specimen under impact loads. Int J Impact Eng. 2022;163: 104162.
  • 13. Meng Y, Jing H, Zhou Z, Zhang L, Sun S. Experimental inves- tigation on the mixed-mode fracture behavior of rock-like mate- rial with bedding plane. Theor Appl Fract Mech. 2022;117: 103159.
  • 14. Chang X, Zhang X, Cheng L, Fu L. Crack path at bedding planes of cracked layered rocks. J Struct Geol. 2022;154: 104504.
  • 15. Tambat A, Subbarayan G. Simulations of arbitrary crack path deflection at a material interface in layered structures. Eng Fract Mech. 2015;141:124–39.
  • 16. Luo S, Gong F. Linear energy storage and dissipation laws during rock fracture under three-point flexural loading. Eng Fract Mech. 2020;234: 107102.
  • 17. Marsavina L, Sadowski T, Knec M. Crack propagation paths in four point bend Aluminium—PMMA specimens. Eng Fract Mech. 2013;108:139–51.
  • 18. Charalambides PG, Lund J, Evans AG, McMeeking RM. A test specimen for determining the fracture resistance of bi-material interfaces. Int J Appl Mech. 1989;56:77–82.
  • 19. Suo Z, Hutchinson JW. Sandwich test specimens for measuring interface crack toughness. Mat Sci Eng. 1989;107:135–43.
  • 20. Myong Lee K, Buyukozturk O, Oumera A. Fracture analy- sis of mortar-aggregate interfaces in concrete. J Eng Mech. 1992;118(10):2031–46.
  • 21. Buyukozturk O, Hearing B. Crack propagation in concrete com- posites influenced by interface fracture parameters. Int J Solids Struct. 1998;35:4055–66.
  • 22. Agrawal A, Karlsson AM. On the reference length and mode mixity for a bi-material interface. ASME J Eng Mater Technol. 2007;129:580–7.
  • 23. Yang SC, Li S, Li Z, Huang S. Experimental investigation on frac- ture toughness of interface crack for rock/concrete. Int J Modern Phys B. 2008;22:6141–8.
  • 24. Zhong H, Ooi ET, Song C, Ding T, Lin G, Li H, et al. Experimental and numerical study of the dependency of interface fracture in concrete–rock specimens on mode mixity. Eng Fract Mech. 2014;124–125:287–309.
  • 25. Chen Y, Hu Y, Hu X. Quasi-brittle fracture analysis of large and small wedge splitting concrete specimens with size from 150 mm to 2 m and aggregates from 10 to 100 mm. Theor Appl Fract Mech. 2022;121: 103474.
  • 26. Guan J, Yuan P, Li L, Yao X, Zhang Y, Meng W. Rock fracture with statistical determination of fictitious crack growth. Theor Appl Fract Mech. 2021;112: 102895.
  • 27. Guan J, Zhang Y, Meng J, Yao X, Li L, He S. A simple method for determining independent fracture toughness and tensile strength of rock. Int J Min Sci Technol. 2022;32(4):707–26.
  • 28. Guan J, Yin Y, Li Y, Yao X, Li L. A design method for determin- ing fracture toughness and tensile strength pertinent to concrete sieving curve. Eng Fract Mech. 2022;271: 108596.
  • 29. Dong W, Wu Z, Zhou X. Fracture mechanisms of rock–con- crete interface: experimental and numerical. J Eng Mech. 2016;142(7):04016040.
  • 30. Dong W, Yang D, Zhang B, Wu Z. Rock-concrete interfacial crack propagation under mixed mode I–II fracture. J Eng Mech. 2018;144(6):4018039.
  • 31. Yuan W, Dong W, Zhang B, Zhong H. Investigations on fracture properties and analytical solutions of fracture parameters at rock–concrete interface. Constr Build Mater. 2021;300: 124040.
  • 32. Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T. ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. Rock Mech Rock Eng. 2014;47:267–74.
  • 33. Wang H, Zhao F, Huang Z, Yao Y, Yuan G. Experimental study of mode-I fracture toughness for layered shale based on two ISRM-suggested methods. Rock Mech Rock Eng. 2017;50:1933–9.
  • 34. Dutler N, Nejati M, Valley B, Amann F, Molinari G. On the link between fracture toughness, tensile strength, and fracture process zone in anisotropic rocks. Eng Fract Mech. 2018;201:56–79.
  • 35. Huang D, Li B, Ma W, Cen D, Song Y. Effects of bedding planes on fracture behavior of sandstone under semi-circular bending test. Theor Appl Fract Mech. 2020;108: 102625.
  • 36. Nejati M, Aminzadeh A, Saar MO, Driesner T. Modified semi- circular bend test to determine the fracture toughness of aniso- tropic rocks. Eng Fract Mech. 2019;213:153–71.
  • 37. Fang K, Yang J, Wang Y. Comparison of the mode I fracture toughness of different cemented paste backfill-related structures: effects of mixing recipe. Eng Fract Mech. 2022;270: 108579.
  • 38. Fang K, Cui L. Experimental investigation of fiber content and length on curing time-dependent mode-I fracture behavior and properties of cemented paste backfill and implication to engineering design. Fatigue Fract Eng Mater Struct. 2022;45(11):3302–18.
  • 39. Wang Y, Yang R. Study of the dynamic fracture characteristics of coal with a bedding structure based on the NSCB impact test. Eng Fract Mech. 2017;184:319–38.
  • 40. Ju M, Li J, Li X, Zhao J. Fracture surface morphology of brit- tle geomaterials influenced by loading rate and grain size. Int J Impact Eng. 2019;133: 103363.
  • 41. Liu Y, Fu A, Jiang B, Yu L, Wang X. Study on the static and dynamic fracturing properties of marble after being damaged dynamically. Adv Civ Eng. 2020;2020:1–13.
  • 42. Wang W, Zhao Y, Teng T, Zhang C, Jiao Z. Influence of bed- ding planes on mode I and mixed-mode (I–II) dynamic fracture toughness of coal: analysis of experiments. Rock Mech Rock Eng. 2021;54(1):173–89.
  • 43. Shi X, Zhao Y, Gong S, Wang W, Yao W. Co-effects of bedding planes and loading condition on mode-I fracture toughness of anisotropic rocks. Theor Appl Fract Mech. 2022;117: 103158.
  • 44. Chang X, Zhang X, Qian LZ, Chen SH, Yu J. Influence of bedding anisotropy on the dynamic fracture behavior of layered phyllite. Eng Fract Mech. 2022;260: 108183.
  • 45. Qiu H, Zhu Z, Wang M, Wang F, Ma Y, Lang L, et al. Study on crack dynamic propagation behavior and fracture toughness in rock-mortar interface of concrete. Eng Fract Mech. 2020;228: 106798.
  • 46. Qiu H, Wang F, Zhu Z, Wang M, Yu D, Luo C, et al. Study on dynamic fracture behaviour and fracture toughness in rock-mortar interface under impact load. Compos Struct. 2021;271: 114174.
  • 47. Sundaram BM, Tippur HV. Dynamics of crack penetration vs branching at a weak interface: an experimental study. J Mech Phys Solids. 2016;96:312–32.
  • 48. Dai F, Xia K, Zheng H, Wang YX. Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen. Eng Fract Mech. 2011;78(15):2633–44.
  • 49. Xia K, Huang S, Dai F. Evaluation of the frictional effect in dynamic notched semi-circular bend tests. Int J Rock Mech Min. 2013;62:148–51.
  • 50. Xu Y, Dai F, Xu NW, Zhao T. Numerical Investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing. Rock Mech Rock Eng. 2016;49(3):731–45.
  • 51. Li Y, Dai F, You W, Liu Y. An asymmetric semi-circular bend method for investigating fracture behavior of brittle rocks under dynamic mixed mode I/II loading. Rev Sci Instrum. 2021;92:35112.
  • 52. Zhu Q, Li D, Han Z, Xiao P, Li B. Failure characteristics of brittle rock containing two rectangular holes under uniaxial compression and coupled static-dynamic loads. Acta Geotech. 2022;17:131–52.
  • 53. Blaber J, Adair B, Antoniou A. Ncorr: open-source 2D digital image correlation Matlab software. Exp Mech. 2015;55:1105–22.
  • 54. Pan B. Reliability-guided digital image correlation for image deformation measurement. Appl Optics. 2009;48(8):1535.
  • 55. Dai F, Huang S, Xia K, Tan Z. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng. 2010;43:657–66.
  • 56. Zukas JA, Nicholas T, Swift HF, Greszczuk LB, Curran DR. Impact dynamics. New York: Wiley; 1982.
  • 57. Guo T, Liu K, Song R. Crack propagation characteristics and fracture toughness analysis of rock-based layered material with pre-existing crack under semi-circular bending. Theor Appl Fract Mech. 2022;119: 103295.
  • 58. Chang X, Guo T, Zhang S. Cracking behaviours of layered specimen with an interface crack in Brazilian tests. Eng Fract Mech. 2020;228: 106904.
  • 59. Zhu J, Bao W, Peng Q, Deng X. Influence of substrate properties and interfacial roughness on static and dynamic tensile behaviour of rock-shotcrete interface from macro and micro views. Int J Rock Mech Min Sci. 2020;132: 104350.
  • 60. Lim IL, Johnston IW, Choi SK. Stress intensity factors for semi-circular specimens under three-point bending. Eng Fract Mech. 1993;44(3):363–82.
  • 61. Ayatollahi MR, Aliha MRM. Fracture toughness study for a brittle rock subjected to mixed mode I/II loading. Int J Rock Mech Min Sci. 2007;44(4):617–24.
  • 62. Hutchinson JW, Suo Z. Mixed-mode cracking in layered structures. Adv Appl Mech. 1991;29:64–191.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6b21abc-9e41-4272-bb6b-39b5035be006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.