PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Predictive Method for the Heat of Explosion of Non-ideal Aluminized Explosives

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The heat of explosion is one of the most important thermodynamic parameters of aluminized explosives. Two improvements in numerical calculations to predict the behaviour of the explosion of non-ideal aluminized explosives were completed in this work. The chemical reaction between aluminum and the C-J detonation products of high energy ingredients was determined and the equation of state for the detonation products of high energy ingredients was revised. The constant k in the BKW equation was revised to obtain perfect results for predicting the C-J parameters for high energy ingredients. The predicted results show that the heats and temperatures of aluminized explosives become maximized when the mass fraction of aluminum powder is 30%, which is in good agreement with the results obtained by empirical formulae.
Rocznik
Strony
541--554
Opis fizyczny
Bibliogr. 26 poz., tab.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Bibliografia
  • [1] Muthurajan H., Sivabalan R., Saravanan N.P., Talawar M.B., Computer Code to Predict the Heat of Explosion of High Energy Materials, J. Hazard. Mater., 2009, 161, 714-717.
  • [2] Zhang Q., Xiang C., Liang H., Prediction of the Explosion Effect of Aluminized Explosives, Sci. China-Phys. Mech. Astron., 2013, 56, 1004-1009.
  • [3] Zhang Q., Chang Y., Prediction of Detonation Pressure and Velocity of Explosives with Micrometer Aluminum Powders, Cent. Eur. J. Energ. Mater., 2012, 9, 279- 292.
  • [4] Maranda A., Research on the Process of Detonation of Explosive Mixtures of the Oxidizer Fuel Type Containing Aluminum Powder, Propellants Explos. Pyrotech., 1990, 15, 161-165.
  • [5] Maranda A., Cudziło S., Explosive Mixtures Detonating at Low Velocity, Propellants Explos. Pyrotech., 2001, 26, 165-167.
  • [6] Cudziło S., Maranda A., Nowaczewski J., Trzciński W., Shock Initiation Studies of Ammonium Nitrate Explosives, Combust. Flame, 1995, 102, 64-72.
  • [7] Keshavarz M.H., Prediction of Heats of Sublimation of Nitroaromatic Compounds via Their Molecular Structure, J. Hazard. Mater., 2008, 151, 499-506.
  • [8] Mader C.L., Recent Advances in Numerical Modeling of Detonations, Propellants Explos. Pyrotech., 1986, 11, 163-166.
  • [9] Mader C.L., Kershner J.D., Three-Dimensional Hydrodynamic Hot-Spot Model. LA-UR-85-742, CONF-850706-6, 1985.
  • [10] Kazandjian L., Danel J.-F., A Discussion of the Kamlet-Jacobs Formula for the Detonation Pressure, Propellants Explos. Pyrotech., 2006, 31, 20-24.
  • [11] Keshavarz M.H., Simple Correlation for Predicting Detonation Velocity of Ideal and Non-ideal Explosives, J. Hazard. Mater., 2009, 166, 762-769.
  • [12] Keshavarz M.H., Prediction of Detonation Performance of CHNO and CHNOAl Explosives through Molecular Structure, J. Hazard. Mater., 2009, 166, 1296-1301.
  • [13] Keshavarz M.H., Mofrad R.T., Poor K.E., Shokrollahi A., Zali A., Yousefi M.H., Determination of Performance of Non-ideal Aluminized Explosives, J. Hazard. Mater. A137, 2006, 83-87.
  • [14] Keshavarz M.H., Motamedoshariati H., Moghayadnia R., Nazari H.R., Azarniamehraban J., A New Computer Code to Evaluate Detonation Performance of High Explosives and Their Thermochemical Properties, Part I, J. Hazard. Mater., 2009, 172, 1218-1228.
  • [15] Muthurajan H., Sivabalan R., Saravanan N.P., Talawar M.B., Computer Code to Predict the Heat of Explosion of High Energy Materials, J. Hazard. Mater., 2009, 161, 714-717
  • [16] Baroody E.E., Peters S.T., Heats of Explosion, Detonation and Reaction Products: Their Estimation and Relation to the First Law of Thermodynamics, The 1990 Jannaf Propulsion Meeting, 1990, 1, 345-354.
  • [17] Keshavarz M.H., Prediction of Detonation Performance of CHNO and CHNOAl Explosives through Molecular Structure, J. Hazard. Mater., 2009, 166, 1296-1301.
  • [18] Mader C.L., Numerical Modeling of Explosives and Propellants, 2nd ed., CRC Press, New York, 1998.
  • [19] Politzer P., Lane P., Concha M.C., in: Energetic Materials − Part 1: Theoretical and Computational Chemistry, (P. Politzer, J.S. Murray, Eds.), Elsevier, Amsterdam, 2003, pp. 247-277.
  • [20] Rice B.M., Hare J., Predicting Heats of Detonation Using Quantum Mechanical Calculations, Thermochim. Acta, 2002, 384, 377-391.
  • [21] Fried L.E., Souers P.C., BKWC: An Empirical BKW Parameterization Based on Cylinder Test Data, Propellants Explos. Pyrotech., 1996, 21, 215-233.
  • [22] Yu T.C., Yin M.C., Empirical Method Estimating Heat of Explosion for Mixed Explosives (in Chinese), Chin. J. Expl. Prop., 1984, 7, 50-55.
  • [23] Zhang B., Zhao H., Jiang H., Li J., Yun S., Zhang S., Explosion and Effects (in Chinese), Defence Industry Press, Beijing, 1979.
  • [24] Meyer R., Explosives, 2nd ed., Verlag Chemie, Germany, 1981.
  • [25] Mader C.L., Numerical Modeling of Expolosive and Propellants, University of California Press, Berkeley, 1979.
  • [26] Kiciński W., Trzciński W.A., Calorimetry Studies of Explosion Heat of Non-ideal Explosives, J. Therm. Anal. Calorim., 2009, 96, 623-630.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6b0e822-a51c-44b6-8a80-1d7fc1f453af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.