PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Relation between thermal conductivity and coordination number for fibre-reinforced composite with random distribution of fibres

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Transverse effective thermal conductivity of the random unidirectional fibre-reinforced composite was studied. The geometry was circular with random patterns formed using random sequential addition method. Composite geometries for different volume fraction and fibre radii were generated and their effective thermal conductivities (ETC) were calculated. Influence of fibre-matrix conductivity ratio on composite ETC was investigated for high and low values. Patterns were described by a set of coordination numbers (CN) and correlations between ETC and CN were constructed. The correlations were compared with available formulae presented in literature. Additionally, symmetry of the conductivity tensor for the studied geometries of fibres was analysed.
Rocznik
Strony
21--48
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr., wz.
Twórcy
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warszawa, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warszawa, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warszawa, Poland
Bibliografia
  • [1] Torquato S.: Random Heterogeneous Materials – Microstructure and Macroscopic Proporties (S. Antman, Ed.), Springer-Verlag, 2002.
  • [2] Schreiner W. and Kratky K.W.: Computer simulation of hard-disk packings with spherical boundary conditions. J. Chem. Soc. Faraday Trans. 2(1982), 78, 379–389.
  • [3] Antwerpen W.V.:, Toit C.D, Rousseau P.: A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles. Nucl. Eng. Des. 240(2010), 10, 1803–1818.
  • [4] Pietrak K.and Wiśniewski T.S.: A review of models for effective thermal conductivity of composite materials. J. Power Technol. 1(2015), 14–24.
  • [5] Torquato S., Uche O.U. and Stillinger F.H.: Random sequential addition of hard spheres in high Euclidean dimensions. Phys. Rev. E, 74(2006), 061308-1–061308-16.
  • [6] Darnowski P., Furmański P., Domański R.: Coordination number for random distribution of parallel fibres. Arch. Thermodyn. 38(2017), 1, 3–26.
  • [7] Jouannot-Chesney P., Jernot J. and Lantuejoul C.: Practical determination of the coordination number in granular media. Image Anal. Stereol 25(2006), 55–61.
  • [8] Huerta A., Naumis G.G.: Role of rigidity in the fluid-solid transition. Phys. Rev. Lett. 90(2003), 14, 145701-1–14570-4.
  • [9] Largo J., Solana J.: Theory and computer simulation of the coordination number of square-well fluids of variable width. Fluid Phase Equilibr. 193(2002), 1-2, 277– 287.
  • [10] Rayleigh L.: On the influence of obstacles arranged in a rectagular order upon the proporties of medium. Phil. Mag. 34(1892) 481–502.
  • [11] Czapla R., Nawalaniec W., Mityushev V.: Effective conductivity of random two-dimensional composites with circular non-overlaping inclusions. Comp. Mater, Sci. 63(2012), 118–126.
  • [12] Fiedle T., Pesetskay E., Ochsne A., Gracio J.: Calculations of the thermal conductivity of porous media. Materials Science Forum, DOI:10.4028/www.scientific.net/MSF.514-516.754, 514:754–758, 01/2006.
  • [13] Torquato S.: Effective electrical conductivity of two-phase disordered composite media. J Appl. Phys. 58(1985), 10, 3790–3797.
  • [14] Torquato S., Lado F., Fisher M.E.: Bounds on the conductivity of a random array of cylinders. Proc. Royal Soc. Lond. A, 417(1988), 1852, 59–80.
  • [15] Furmański P.: Heat conduction in composites: Homogenization and macroscopic behavior. Appl. Mech. Rev. 50(1997), 6, 327–356.
  • [16] Perrins W.T., McKenzie D.R., McPhedran R.: Transport proporties of regular arrays of cylinders. Proc. R. Soc. Lond. A, 369(1979), 1737, 207-225.
  • [17] Hinrichsen E.L., Feder J., Jossang T.: Geometry of random sequential adsorption. J. Stat. Phys. 44(1986), 5/6, 793–827.
  • [18] Farlow S.J.: Partial Differential Equations for Scientist and Engineers. Dover Pub. 1993.
  • [19] Liu S., Zhang Y.: Multi-scale analysis method for thermal conductivity of porous material with radiation. Multidiscipline Model. Mater. Struct., Emerald, 2(2012), 3, 327–344.
  • [20] Furmański P., Gogół W.: Fundamentals of heat conduction in anisotropic media. Bull. Inst. Heat Eng. 46(1977).
  • [21] Chen Q., Wang M., Guo Z., Pan N.: Irreversibility of heat conduction in the complex multiphase systems and its application to the effective thermal conductivity of porous media. Int. J. Nonlin. Sci. Num. 10(2009), 1, 7–16.
  • [22] Wang M., Pan N.: Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int. J. Heat Mass Tran. 51(2008), 5-6, 1325–1331.
  • [23] ANSYS FLUENT 13.0.0 User’s Guide, 2010.
  • [24] Gambit 2.4 User’s Guide, 2007.
  • [25] McQuarrie D.A.: Mathematical Methods for Scientists and Engineers. University Science Books Suasalito 2003.
  • [26] Smith P.A., Torquato S.: Computer simulation results for bounds on the effective conductivity of composite nedia. J. Appl. Phys. 65(1989), 3, 893–900.
  • [27] Jopek H., Strek H.T.: Optimization of the effective thermal conductivity of a composite. In: Convection and Conduction Heat Transfer, (A. Ahsan, Ed.), InTech, Rijecka 2011, 197–214.
  • [28] Glandt E.D.: Continuity between disorder and order in the sequential deposition of particles. Chem. Eng. Commun. 19(2005), 2, 1405–1423.
  • [29] Material Property MatWeb: Proporties of diamond, copper and magnesium 11 2012, www.matweb.com.
  • [30] Kidalov S.V., Shakhov F.M.: Thermal conductivity of diamond composites. Materials 2(2009), 2467–2495.
  • [31] Shinde S.L., Goela J.S.: High Thermal Conductivity Materials. Springer, 2006.
Uwagi
EN
This work has been supported by the the Polish National Centre for Research and Development within European Regional Development Fund under the Operational Program Innovative Economy No POIG.01.01.02-00-097/09 ‘TERMET – New structural materials with enhanced thermal conductivity’.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6ad2e99-4f85-40ce-8eae-14040529c882
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.