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ABSTRACT
The section of the paper on simulation studies presents the application of fractional calculus to describe the 
dynamics of pneumatic systems used in telematics. In the construction of mathematical models of the analyzed 
dynamic systems, the Riemann-Liouville definition of non- integer order was used. For the analyzed model, 
transfer function of integer and non-integer order was determined. Functions describing characteristics in time and 
frequency domains were determined,  whereas the characteristics of the analyzed systems were obtained by means 
of computer simulation. The  section of the paper on laboratory research presents  the results of the laboratory tests 
of the injection system of the internal combustion engine with  special attention to  the verification of simulated tests 
of selected pneumatic systems described with the use of  fractional calculus.
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1. Introduction 

The dynamic development of research in recent years on the 
use of fractional calculus for the analysis of dynamic systems has 
prompted the authors to use it in the analysis and modeling of 
pneumatic systems that have been described so far with “classical” 
mathematical analysis [1, 2, 4, 5, 11, 12, 13, 15, 16].

The authors of the paper have developed a method for describing 
the dynamic properties of pneumatic systems, based on fractional 
calculus which allows to analyze the properties of a wide range 
of pneumatic systems of any order [6, 7, 8, 9, 10]. The simulation 
tests of the membrane pressure transducer, presented in the paper, 
were performed with the use of classical differential calculus and 
fractional calculus. In the construction of the mathematical model 
of the analyzed dynamical system, the Riemann-Liouville definition 
of the differintegral of non-integer order was used. For simulation 
studies, Microsoft Office Excel and MATLAB were used [14]. In the 
laboratory tests, which were the verification of the simulation tests 

of the membrane pressure transducer, the following assumptions 
were made: the analyzed pneumatic systems were modeled 
as a linear system; the pneumatic system was described with a 
transfer function characterizing the dynamics of this system and 
the components contained therein, assuming constant physical 
parameters and omission of aging of its components; an assessment 
was accepted of the dynamic properties of the pneumatic systems in 
terms of amplitude and phase; pneumatic systems with a pressure of 
up to 1MPa were analyzed while operating in the frequency range 
up to 500Hz; with the variability of the thermodynamic parameters 
of the air as a working medium, it can be treated as an ideal gas; 
in the analysis of the pneumatic systems, an adiabatic process was 
assumed whereas the pressure distribution in the whole volume of 
the measuring chamber was homogeneous [7, 8].
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2. Membrane pressure 
transducer 

Simulation tests of the membrane pressure transducer were 
performed using a classical and fractional diff erential calculus. 
Th e tested transducer was made from a pressure chamber and an 
inlet pipe, which supplied a working medium (air). To determine 
how the connection of the intake pipe to the transducer chamber 
aff ected its dynamic properties, the acoustic system shown 
schematically in Fig. 1 is considered [6, 7, 9, 10].

Fig. 1. Pressure chamber with inlet pipe: r,l- tube dimensions, p0- 

input pressure (force), p0 - pressure in transducer chamber [3]

Th e relationship that binds the output signal p (t) (pressure 
inside the chamber) to the signal p0 (t) (pressure at the open end) 
can be represented as:

(1)

Constants occurring in equation (1) can be represented as:

(2a)

(2b)

(2c)

where: r[kgm-3] – density of gas; η[kgm-1s-1] – dynamic 
viscosity; Cp [Ns2m-5] – pneumatic capacity (gas compressibility); 
p(t)[Pa] – pressure in transducer chamber; p0(t) [Pa] – input 
pressure; V[m3] – transducer chamber volume; Lp [m3N-1] – 
pneumatic induction (gas inertia); Rp [Nsm-5] – fl ow resistance; 
c [ms-1] – speed of sound in the gas; r, l[m] – dimensions of the 
inlet pipe.

By specifying the pulsatance ω0 and damping ratio ξ as:

(3a)

(3b)

equation (1) fi nally assumes the form:

(4)

Equation (4) is a mathematical description of the dynamics 
of the analyzed pneumatic system, using classical diff erential 

calculus (of integer orders). Th e impulse response of the analyzed 
pneumatic system is given by:

(5)

Th e step response of the system is expressed by:

(6)

where: 

(7)

Given that the derivatives of integer orders in the fractional 
calculus are a special case of fractional derivatives, equation (4) 
can be written as:

(8)

where: v>0.
In order to determine the pressure in the transducer chamber, 

the defi nition of Riemann - Liouville diff erintegral of non-integer 
order was used, defi ned by a following formula [5, 12, 13]:

(9)

where:
α – the order of integration within bounds (a,t) of the function 

f(t),  and: ,  - Euler’s gamma 
function

Th e Laplace transform for a fractional derivative defi ned by 
Riemann - Liouville takes the form:

(10)

where: Njáj 1
Th e practical application of the formula determining the Laplace 

transform of a Riemann-Liouville fractional derivative faces some 
diffi  culties related to the lack of physical interpretation of the initial 
values of successive derivatives of fractional orders. Assuming zero 
initial conditions, the diffi  culties associated with their physical 
interpretation will be eliminated.

Using the Laplace transform to equation (8), for zero initial 
conditions, we obtain:

(11)

Th us the transfer function of non-integer order of the analyzed 
pneumatic system is obtained:

(12)

Transfer function denominator of non-integer order has two 
complex roots as the system damping is ξ<1. 
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3. Impulse response to 
the membrane pressure 
transducer

By transforming equation (12), we obtain:

(13)

Using the properties of the geometric series:

(14)

Conducting elementary transformations, we obtain:

(15)

Using the formula:

(16)

we obtain:

(17)

where:

(18)

Th e visualization of the pressure impulse response in the 
transducer chamber required a program to be written in the 
MATLAB environment [14]. Th e program for the given parameters 
and derivative orders calculates the function values and draws out 
their impulse response. We present, for comparison, the graphs of 
the function obtained for the classic solution (v=1) and for several 
fractional orders.

In Fig. 2, the impulse response of the analyzed pneumatic 
transducer was determined by simulating equation (17) for the 
selected parameter values:

.
Th e impulse response (characteristics 2C in the above fi gure) 

was also presented, by simulating a computer equation (5) which 
is a mathematical model of the analyzed pneumatic system, with 
the use of a classical diff erential calculus (described by ordinary 
diff erential equation). It is worth noting that while reducing the 
row, it reduces the response time, which is desirable in measuring 
transducers.

Fig. 2. Impulse response of a pneumatic transducer described with 

an integer and non integer order: F0,5- for v=0,5, F0,7 - for 

v=0,7, F0,9- for v=0,9, F1,0 - for v=1,0, C2 - classic model (integer 

order) [7]

4. Step response of the 
membrane pressure 
transducer

Th e step response of the tested transducer is defi ned by the 
relationship:

(19)

Using the properties of geometric series, we obtain:

(20)

Conducting elementary transformations, we obtain:

Using the formula (16), we obtain:

in which 
 
is the Mittag-Leffl  er function defi ned by the 

equation (18).
Running a simulation of a pneumatic transducer, a unit step 

signal was applied and the received step response is shown in Fig. 3.
Th e model described by equation (17) and (22) correctly 

reproduces the amplitude of the input signal as the classical model 
- the graphs coincide (graph 1,0F  - the parameter v=1 coincides 
with 2C –the classical model). Th is confi rms the correctness of 
the method and that the diff erential calculus with derivatives of 
integer orders is a special case of fractional calculus. Th e step 
response (Fig. 3) shows that regardless of the diff erential order, 
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the amplitude of the signal is constant. Th e smaller the order of 
the derivative, the faster the reaction of the system to the unit step.

Fig. 3. The step response of the pneumatic system: F0,5- for v=0,5, 

F0,7 - for v=0,7, F0,9- for v=0,9, F1,0 - for v=1,0, C2 - classic model 

(integer order) [7]

5. Frequency response of 
the membrane pressure 
transducer

In order to determine the relationships describing the frequency 
response, the spectral transfer function of the tested transducer was 
determined. Substituting:

(23)

to the formula (12), the spectral transfer function of the 
transducer is obtained:

(24a)

(24b)

By making elementary transformations, the real and imaginary 
part of the spectral transfer function was calculated:

(25)

where:

(26a)

(26b)

Knowing the real and imaginary part of the spectral transfer 
function of the transducer, one can determine the equation 
describing the logarithmic amplitude step:

(27)

and the equation describing the logarithmic phase step:

(28)

In order to verify the relationships describing logarithmic 
steps of amplitude (27) and phase (28) of the tested transducer, 
the pneumatic pressure transducer was modeled in the MATLAB 
environment, described by means of ordinary diff erential equation 
and diff erential equation with derivatives of non-integer order. 
Describing the transducer with the use of a diff erential equation 
of non-integer orders, the parameter v=1 was assumed and the 
obtained logarithmic amplitude and phase steps were compared 
to the logarithmic amplitude and phase steps obtained from the 
transducer description by means of the ordinary diff erential 
equation.

Th e simulations assumed:
• pulsatance ,
• damping ratio ξ = 2

Th e transfer function of the pneumatic pressure transducer, 
calculated from the ordinary diff erential equation, has the form:

(29)

By performing the simulation of equation (29) which presents 
the dynamics of the phenomena occurring in the analyzed 
pneumatic system, in the MATLAB programming environment, 
the frequency response presented in Fig. 4 was obtained:

Fig. 4. Logarithmic frequency response of the transducer described 

by the ordinary diff erential equation [6] 

When simulating equations (27) and (28) in the MATLAB 
environment which describe a pneumatic pressure transmitter by 
means of a diff erential equation of non-integer order, assuming a 
coeffi  cient v=1 for damping ξ=0,8, the response shown in Fig. 5 
was obtained:

Logarithmic frequency response of amplitude and phase 
presented by the simulation of ordinary diff erential equation (Fig. 
4), coincide with frequency response obtained by the simulation of 
the equations describing logarithmic response of amplitude (27) and 
phase (28), obtained from the equation of the transducer described 
with the help of non-integer orders (Fig. 5) for the parameter v=1.
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Fig. 5. Logarithmic frequency response of a pneumatic transducer 

described by means of a diff erential equation with non-

integer order for v=1 (equation 27 and 28) [6]

In order to obtain a Bode plot, the equations (27) and (28) were 
simulated by writing an appropriate program in the MATLAB 
environment. Written in the MATLAB environment, the program 
allows analyzing the transducer for diff erent orders of derivatives, 
with any step, because the order was given as a parameter. Th e 
simulation results for the selected values of parameter v are shown 
in Fig. 6 and Fig. 7.

Fig. 6. Logarithmic amplitude response of a pneumatic transducer 

described by means of diff erential equation with fractional 

derivatives of non-integer orders in the range (0.8-1.2) [7]

Fig. 7. Logarithmic phase response of a pneumatic transducer 

described by means of diff erential equation with fractional 

derivatives of non-integer orders in the range (0.8-1.2) [7]

Th e analysis of the responses shows that for the parameter 
v<1, the logarithmic amplitude responses (Fig. 6) are monotonically 
decreasing functions. For the parameter v>1, the logarithmic 
amplitude responses have a maximum depending on the order of 
the diff erential. Th e maximum is achieved with resonant frequency 

.

Increasing the order of derivative, the frequency responses 
acquire the character of a second-order oscillatory element, and 
while decreasing the order of the derivative, the responses acquire 
the character of the fi rst order inertial element. Decreasing the 
order of the derivative causes the transducer to become more 
linear, which allows the scope of work to be increased. Increasing 
the parameter v above one results in resonance, although it should 
not be visible in the response, because the simulation was carried 
out for the damping v=0,8. Th e model then does not refl ect the 
actual layout.

6. Selected laboratory tests of 
the transducer

In order to identify the dynamics of the pressure transducer, 
the measuring system was constructed as it is shown in Fig. 8. 
Th e AVL single-cylinder automatic ignition engine was used for 
testing. It is an internal combustion engine with a capacity of 
511cm3, cylinder diameter 85.01mm and a piston stroke of 90mm. 
Th e measurements were made in the inlet air system to the engine. 
Th e air supply was provided by an additional system consisting of 
a rotary screw compressor. Th anks to this system it was possible to 
regulate the air pressure in the intake system [8].

Fig. 8. View of measuring station: 1 - measuring chamber, 2 - intake 

manifold,  3-input pressure transducer, 4 - output pressure 

transducer [8]

In the air intake system leading into the measuring chamber, 
the fi rst pressure transducer was installed. Th e second transducer 
was installed inside the measuring chamber, at the outlet of the 
air into the combustion chamber. Kulite pressure transducers, 
type ETL-189-190M-10 BARA were used. Two identical pressure 
transducers were used in the system.

Th e tests were performed with Concerto and Puma soft ware, 
whose interfaces are shown in Fig. 9. Th e presented measuring 
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system allows studying the dynamic properties of the pressure 
transducer. Th e studies refer to the time and frequency analysis 
of the investigated pressure transducer described with integer and 
non-integer order.

Fig. 9. Interfaces of the programs for motor control and recording 

fast-changing parameters: 1 - Concerto program window 

for fast variable parameters recording (monitor 1), 2 - Puma 

program window for controlling and archiving engine 

parameters (monitor 2), 3 - Puma program window for 

controlling and archiving engine parameters (monitor 3) [8]

In the measuring system, computers with Concerto and Puma 
soft ware were used. Th e Concerto program allows recording fast-
changing system parameters and recording them in time and 
numeric format. Th e Puma program was used to control the engine.

Th e air supplied into the measuring system is provided by a 
rotary screw compressor. Th e engine draws air into the combustion 
chamber from the measuring system by opening the valve located at 
the exit of the measuring chamber. Th e valve opens and closes every 
two turns of the engine crankshaft . Cyclical opening of the valve 
caused the same eff ect as supplying the system with a pneumatic 
rectangular signal generator, which allowed experimental evaluation 
of the step response of the measuring system. Th e step response of 
the system was determined using the Concerto program, and its 
graphic representation is shown in Fig. 10.

Fig. 10. The step response of the measuring system in the measuring 

chamber and inlet tube obtained experimentally [8]

Th e obtained graph is a step response of a typical oscillating 
element with pulsatance ω0 and damping ratio ξ. In order to 

identify the dynamic properties of the tested pneumatic system it 
is convenient to determine its transfer function.

Th e equation describing the logarithmic amplitude response 
can be determined from the equation (27):

(30)

Aft er simulating equation (37), a logarithmic amplitude 
response of the non-integer order of the tested measurement system 
was obtained for diff erent values of the parameter v, which is shown 
in Fig. 12.Against the response obtained by means of simulation 
of the mathematical model in which the actual parameters of the 
tested transducer were applied, the transducer response obtained 
experimentally was presented.

Fig. 11. Logarithmic amplitude response determined 

experimentally and theoretically for diff erent values of the 

parameter v [8] 

Fig. 12. Logarithmic phase response determined experimentally 

and for diff erent values of the parameter v [8] 

Logarithmic phase response was determined by measuring the 
phase shift  between the output and input signal for each set motor 
shaft  speed.

Th e minimum rotation speed of the internal combustion 
engine used in the tests is 1000[obr/min]. Th is limitation made it 
impossible to obtain experimentally the full frequency response 
shown in Fig. 11 and 12. Th e obtained responses were made from 
pulsation  ω=104,717[rad/s] do ω=335,093[rad/s].

By comparing the obtained responses with the responses of 
non-integer order for the parameter v=1, it can be stated that the 
tested transducer is of a slightly smaller order than the second 
order oscillating element. Experientially determined frequency 
responses are included between the simulated frequency response 
for parameter v=0,98 and v=1. Th is means that the transducer 
should be modeled with the equations of non-integer order. It 
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can therefore be concluded that the description with the classical 
method would be inaccurate.

7. Conclusion

The pneumatic system, analyzed in the article in the part on 
simulation, represents the second order damping oscillator with 
damping ratio ξ<1, which means that the characteristic equation 
of the model does not have real solutions. Therefore, the authors 
were required to develop the original method for determining 
the relationships describing the time and frequency responses 
for dynamic systems described with fractional calculus. In the 
construction of the mathematical model of the analyzed dynamic 
system, the definition of Riemann - Liouville differintegral (of 
fractional order) was used.

The paper presents the results of the laboratory tests of the 
pressure transducer, which was described with a mathematical 
model. The analysis of the dynamic properties of the model in 
terms of time and frequency was conducted. The parameters of 
the tested pressure transducer were determined experimentally - 
the damping ratio ξ and the pulsatance ω0, which were used to 
determine the transfer function of integer and non-integer order 
. Having  the knowledge of transfer function, the step response 
was determined as well as logarithmic amplitude response and 
phase response of integer and non-integer order. It was found out 
that the time response obtained experimentally, coincides with 
the response determined by the developed model of non-integer 
order of the transducer for the parameter v=1. This confirms the 
correctness of the designated model.

Frequency responses obtained experimentally differ slightly from 
the responses obtained in computer simulation. The logarithmic 
amplitude response and phase response obtained experimentally 
are of the order of the oscillating element for the parameter v of the 
interval 0,98<v<1.

In the real system shown in the article, the pressure in the 
transducer chamber was measured at the outlet of the air into 
the combustion chamber, where, at the moment of aspiration of 
air through the engine, the air reaches the speed of sound. Such 
conditions may account for a slight decrease in the order of the 
oscillating element under testing.

The analysis of the logarithmic amplitude response of the 
models presented in the article shows that the local maximum 
present in these characteristics is dependent on the order of the 
derivative and the bigger the amplitude, the higher the order of the 
derivative. For the parameter v=1 (classical model) the amplitude 
reaches the maximum at the resonant frequency for damping ξ 
<1. With the decreasing order of the derivative, the increase in the 
resonant frequency of the circuit can be observed.

Fractional calculus is particularly useful in building dynamic 
models of mathematical systems working in conditions that cannot 
be described with differential equations of integer orders. This can 
be deduced by analyzing systems such as the long electric line of 
infinitely large length or the supercapacitor of a few thousand 
Farads, which are now also described with fractional calculus.

The presented simulation studies were performed in the MATLAB 
development environment (manufacturer: The MathWorks) and 
Microsoft Office Excel (manufacturer: Microsoft). The authors of the 
paper declare that, using the above mentioned trademarks, they did 
so only with reference to this publication and with such an intention 
that it would be for the benefit of the trademark holders but without 
the intention of infringing the trademarks.

Bibliography

[1] BUSŁOWICZ M.: Stability of linear continous-time fractional 
systems of commensurate order. Journal of Automation, 
Mobile Robotics and Intelligent Systems, vol. 3, no. 1, 2009, 
pp. 16-21

[2] CAPONETTO R., et al.: Fractional Order Systems: Modeling 
and Control Applications. World Scientific, 200 pages, 
Singapore, 2010

[3] CHWALEBA A., LUFT M.: Właściwości i projektowanie 
wybranych przetworników mechano–elektrycznych. 
Wydawnictwo Politechniki Radomskiej, Wyd. II popr. i uzup., 
Radom, 1998

[4] DIETHELM K.: The Analysis of Fractional Differential 
Equations, Springer, 246 pages, Berlin, Germany 2010

[5] KACZOREK T.: Selected Problems of Fractional Systems 
Theory. Springer-Verlag GmbH, 344 pages, Berlin, Germany 
2011

[6] LUFT M., et al.: Charakterystyki częstotliwościowe modelu 
przetwornika ciśnienia opisanego równaniem różniczkowym 
niecałkowitego rzędu. Logistyka nr 3/2015, Poznań, 2015

[7] LUFT M., NOWOCIEŃ A., PIETRUSZCZAK D.: Analiza 
właściwości dynamicznych wybranych układów pneumatycznych 
za pomocą rachunku różniczkowego niecałkowitych rzędów. Część 
1. Badania symulacyjne. Autobusy (Eksploatacja i testy), Instytut 
Naukowo-Wydawniczy SPATIUM, nr 12/2017, Radom 2017

[8] LUFT M., NOWOCIEŃ A., PIETRUSZCZAK D.: Analiza 
właściwości dynamicznych wybranych układów pneumatyc-
znych za pomocą rachunku różniczkowego niecałkowitych 
rzędów. Część 2. Badania laboratoryjne. Autobusy (Eksp-
loatacja i testy), Instytut Naukowo-Wydawniczy SPATIUM, 
nr 12/2017, Radom 2017

[9] LUFT M., PIETRUSZCZAK D., NOWOCIEŃ A.: Frequency 
response of the pressure transducer model described by the 
fractional order differential equation. TTS 12 (2016), Radom 
2016

[10] LUFT M., et al.: Zastosowanie rachunku różniczkowo – 
całkowego niecałkowitych rzędów w matematycznym mod-
elowaniu przetwornika ciśnienia. Autobusy nr 6/2016, Insty-
tut Naukowo-Wydawniczy SPATIUM: Radom 2016

[11] MILLER K., ROSS B.: An introduction to fractional calculus 
and fractional differential equations. Wiley, 382 pages, New 
York, US 1993

[12] OSTALCZYK P.: Zarys rachunku różniczkowo-całkowego 
ułamkowych rzędów. Teoria i zastosowanie w automatyce. 
Wydawnictwo Politechniki Łódzkiej, stron 430, Łódź 2008 



ANALYSIS OF DYNAMIC CHARACTERISTICS OF SELECTED PNEUMATIC SYSTEMS WITH FRACTIONAL 
CALCULUS USED IN TELEMATICS

© Copyright by PSTT , All rights reserved. 201844

[13] PODLUBNY I: Fractional Differential Equations. An 
Introduction to Fractional Derivatives, Fractional Differential 
Equations, Some Methods of Their Solution and Some of 
Their Applications. Academic Press, 368  pages, San  Diego-
Boston-New York-London-Tokyo-Toronto 1999

[14] MOŚCIŃSKI J., OGONOWSKI Z. (ed.): Advanced Control 
with MATLAB and SIMULINK. Pearson Higher Education, 
272 pages, 1995

[15] SABATIER J., AGRAWAL O. P., MACHADO T. J. A. (Eds.): 
Advances in fractional calculus, Theoretical developments 
and applications in physics and engineering, Springer-Verlag, 
552 pages, Berlin 2007

[16] SAMKO S., KILBAS A.A., MARICHEV O.: Fractional 
integrals and derivatives. Theory and applications.  Gordon 
& Breach Sci. Publishers: London, UK 1993


