PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical study of precast bridge piers with a new UHPC socket column‑footing connection

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the approach of prefabricated and assembled bridge piers in the accelerated bridge construction (ABC), this study proposes a new precast bridge pier-footing connection using ultra-high performance concrete (UHPC) cupped socket. Compared to conventional socket connection, the UHPC cupped socket connection can eliminate the adverse effects of reserved slots on the cap beams or footings. Three UHPC cupped socket pier specimens and one cast-in-place (CIP) pier specimen are designed and cast for quasi-static tests, and the damaging pattern and hysteretic characteristics of these specimens are investigated. After verifying the accuracy of the finite element model, the numerical parametric study was conducted to investigate two design parameters. The results show that the reasonable design of the cupped socket ensures that the piers connected by the UHPC cupped socket have the same seismic performance as the CIP pier. Generally, increasing the socket height enhances the strength while also increases the residual deformation of the specimens. When the axial compression is greater, it improves the structural strength, but it is not advantageous to structural ductility. Based on the experimental and simulative results, this study analyzes the force transmission and deformation mechanism of UHPC cupped socket piers. The ultimate displacement calculation equations of UHPC cupped socket piers are compared with those of different national standards and scholars’ researches to identify applicable equations for the calculation of UHPC cupped socket piers.
Rocznik
Strony
art. no. e17, 2024
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
autor
  • College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
autor
  • College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
autor
  • College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
autor
  • College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
  • College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
autor
  • College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
  • College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
Bibliografia
  • 1. Voo YL, Foster SJ, Voo CC. Ultrahigh-performance concrete seg-mental bridge technology: toward sustainable bridge construction.J Bridge Eng. 2015;20(8):B5014001.
  • 2. Mantawy IM, Sanders DH, Eberhard MO, Stanton JF. Modelling of debonded reinforcement in ABC connections designed for seismic zones. Eng Struct. 2019;198: 109351.
  • 3. Akhnoukh AK. Accelerated bridge construction projects using high-performance concrete. Case Stud Constr Mater. 2020;12:e00313.
  • 4. Maheswaran J, Chellapandian M, Arunachelam N. Retrofitting of severely damaged reinforced concrete members using fiber reinforced polymers: a comprehensive review. Structures.2022;38:1257–76.
  • 5. Cheng Z, Liu D, Li S, Wang J, Zhang J. Performance characterization and design recommendations of socket connections for precast columns. Eng Struct. 2021;242: 112537.
  • 6. Billah AM, Alam MS. Seismic performance evaluation of multi-column bridge bents retrofitted with different alternatives using in cremental dynamic analysis. Eng Struct. 2014;62:105–17.
  • 7. Wu R-Y, Pantelides CP. Rapid repair and replacement of earth-quake-damaged concrete columns using plastic hinge relocation.Compos Struct. 2017;180:467–83.
  • 8. Mehrsoroush A, Saiidi MS, Ryan K. Development of earthquake-resistant precast pier systems for accelerated bridge construction in Nevada. Department of Transportation, Nevada; 2017.
  • 9. Bao L, Zhao J, Teng F, et al. Experimental study on the seismic performance of precast segmental unbonded post-tensioned framepiers. Soil Dyn Earthquake Eng. 2023;173: 108143.
  • 10. Zhong J, Shi L, Yang T, et al. Probabilistic seismic demand model of UBPRC columns conditioned on Pulse-Structure parameters.Eng Struct. 2022;270: 114829.
  • 11. Zhang P, Wang Z, Ge J, Yan X, Liu S. Full-scale experimental study on precast bridge column with grouted sleeve connections and large-diameter reinforcing bars. Eng Struct. 2023;294:116747.
  • 12. Wang Z, Li T, Qu H, Wei H, Li Y. Seismic performance of precast bridge columns with socket and pocket connections basedon quasi-static cyclic tests: experimental and numerical study. JBridge Eng. 2019;24(11):04019105.
  • 13. Xu Y, Zeng Z, Wang Z, Ge J. Experimental studies of embedment length of precast bridge pier with socket connection to pile cap.Eng Struct. 2021;233: 111906.
  • 14. Zhang G, Han Q, Xu K, Du X, He W. Quasi-static tests of CFST embedded RC column-to-precast cap beam with socket connection. Eng Struct. 2021;241: 112443.
  • 15. Xu T, Li Q, Zhao R, et al. On the early-age bond-slip behavior of an eccentric bar embedded in a grouted sleeve. Eng Struct.2019;190:160–70.
  • 16. Si X, Wen J, Zhang G, Jia Z, Han Q. Seismic performance of precast double-column pier with UHPC-filled socket connections. Eng Struct. 2023;285: 115618.
  • 17. MarshML. Application of accelerated bridge construction connections in moderate-to-high seismic regions. Transportation Research Board, vol. 698; 2011.
  • 18. Mashal M, Palermo A. Quasi-static cyclic testing of half-scalefully precast bridge substructure system in high seismicity. Proceedings of the New Zealand Society for Earthquake Engineering; 2014; pp. 1–9.
  • 19. Xu Y, Zeng Z, Wang Z, et al. Experimental studies of embedment length of precast bridge pier with socket connection to pilecap. Eng Struct. 2021;233: 111906.
  • 20. Zhou X, Nie X, Xu S, Ding R, Zhang C, Yin X. Experimental studies on seismic performance of socket connections with shear keys and inner and outer filled reinforced concrete. EngStruct. 2022;273: 115021.
  • 21. Chen L, Yan J, Xiang N, et al. Shear performance of ultra-highperformance concrete multi-keyed epoxy joints in precast segmental bridges. Structures. 2022;46:1696–708.
  • 22. Liu Y, Yang H, Luan L, et al. Shear performance and failure process of perfobond connector in steel-UHPC composite structures. Structures. 2023;50:1461–75.
  • 23. Ghabussi A, Marnani JA, Rohanimanesh MS. Seismic performance assessment of a novel ductile steel braced frame equipped with steel curved damper. Structures. 2021;31:87–97.
  • 24. Ghabussi A, Marnani JA, Rohanimanesh MS. Improving seismic performance of portal frame structures with steel curved dampers. Structures. 2020;24:27–40.
  • 25. Park R, Paulay T. Reinforced concrete structures. New York: Wiley; 1975.
  • 26. Zhong J, Zhu Y, Mangalathu S, et al. Probabilistic curvature-and-drift limit states predictive models of high-strength bridge columns. Eng Struct. 2023;295: 116859.
  • 27. GB/T 50081-2019. Standard for test methods of concrete physical and mechanical properties. Beijing: China Architecture &Building Press; 2019 (in Chinese).
  • 28. GB/T 1499.2–2018, Steel for the reinforcement of concrete-Part2: hot rolled ribbed bars. Beijing: Standards Press of China;2018. (in Chinese).
  • 29. FEMA. Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components. FEMA 461. Washington, DC: FEMA; 2007.
  • 30. Liu Y, Li X, Zheng X, Song Z. Experimental study on seismicresponse of precast bridge piers with double-grouted sleeve connections. Eng Struct. 2020;221: 111023.
  • 31. Kennedy-Kuiper RCS, Wakjira TG, Alam MS. Repair and ret-rofit of RC bridge piers with steel-reinforced grout jackets: an experimental investigation. J Bridge Eng. 2022;27(8):04022067.
  • 32. Ghabussi A, Mortazavi M, Betha R. Seismic performance of a cold-formed and hot-rolled steel wall system equipped with curved steel dampers. Structures. 2023;53:296–316.
  • 33. JTG 3362-2018 Specifications for design of highway reinforced concrete and prestressed concrete bridges and culverts. Ministry of Transport of the People’s Republic of China, Beijing; 2018.
  • 34. Mander JB, Priestley MJN, Park R. Theoretical stress-strain model for confined concrete. J Struct Eng.1988;114(8):1804–26.
  • 35. Wang R, Ma B, Chen X. Seismic performance of prefabricated segmental bridge piers with grouted splice sleeve connections.Eng Struct. 2021;229: 111668.
  • 36. Zhong J, Shi L, Jeon JS. Probabilistic seismic drift-based capacity model of unbonded prestressed reinforced concrete columns: prediction model and dispersion. Soil Dyn Earthq Eng. 2023;174:108211.
  • 37. Akbari S, Khanmohammadi M. A probabilistic framework to makea decision on the post-earthquake functionality of bridges considering the damage, residual displacement, and after shock. BullEarthq Eng. 2022. https://doi.org/10.1007/s10518-021-01269-9.
  • 38. Hassanli R, Youssf O, Mills JE, Karim R, Vincent T. Performance of segmental selfcentering rubberized concrete columns under different loading directions. J Build Eng. 2018;20:285–302.
  • 39. Li F, Abruzzese D, Milani G, et al. Influence of internal defects of semi grouted sleeve connections on the seismic performance of precast monolithic concrete columns. J Build Eng. 2022;49:104009.
  • 40. Caltrans SDC. Caltrans seismic design criteria version 1.6. California Department of Transportation, Sacramento; 2010.
  • 41. Eurocode8-2005 Design provisions for earthquake resistance of structures—Part 2: bridges. Brussels: Committee European De Normalization; 2005.
  • 42. Specifications for Seismic Design of Highway Bridges. JTG/T2231–01-2020[S]. Beijing: People’s Communications Press; 2020.((in Chinese)).
  • 43. JRA—2002 Design specifications for highway bridges, Part V:seismic design. Tokyo: Japan Road Association; 2002.
  • 44. Berry MP, Lehman DE, Lowes LN. Lumped-plasticity models for performance simulation of bridge columns. ACI Struct J.2008;105(3):270–9.
  • 45. Li GQ, Tang GW, Zheng G. Equivalent plastic hinge length of circular reinforced concrete bridge columns. Chin Civil Eng.2016;49(2):87–97.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6a7f087-13e2-46e8-83ec-7890b1915b93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.