PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Analysis of nonlinear response of anti-parity-time symmetric structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a theoretical analysis of a gain and loss saturation effect in planar multilayer anti-parity-time (APT) symmetric structures for the first time. This analysis makes it possible to examine the behaviour of nonlinear APT structures when excited by incident light of known intensity and compare their properties with corresponding paritytime (PT) symmetric structures. Two types of APT structures are studied: one with both layers of the primitive cell being gain layers and the other with both layers being loss layers. The refractive indices of the individual layers satisfy the condition n(z) =-n*(-z). Nonlinear analysis is performed using a modified transfer matrix method, which allows for the determination of output intensity characteristics as a function of input intensity for different levels of gain or loss saturation intensities. These characteristics demonstrate a bistable behaviour and a strong nonreciprocal response of the investigated APT structures. The results obtained for both types of APT structures are compared with corresponding PT structures, showing that APT structures reveal identical linear and nonlinear responses as corresponding PT structures.
Rocznik
Strony
art. no. e154198
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-665 Warsaw, Poland
  • Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-665 Warsaw, Poland
  • Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-665 Warsaw, Poland
  • National Institute of Telecommunications, ul. Szachowa 1, 04-894 Warsaw, Poland
Bibliografia
  • [1] Ge, L. & Türeci, H. E. Antisymmetric PT-photonic structures with balanced positive- and negative-index materials. Phys. Rev. A. 88, 053810 (2013). https://doi.org/10.1103/PhysRevA.88.053810.
  • [2] Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243-5246 (1998). https://doi.org/10.1103/PhysRevLett.80.5243.
  • [3] El-Ganainy, R., Makris, K. G., Christodoulides, D. N. & Musslimani, Z. H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632-2634 (2007). https://doi.org/10.1364/OL.32.002632.
  • [4] Cao, H. et al. Unidirectional invisibility induced by complex anti-parity-time symmetric periodic lattices. Appl. Sci. 9, 3808 (2019). https://doi.org/10.3390/app9183808.
  • [5] Fang, M., Wang, Y., Zhang, P., Xu, H., & Zhao, D. Multiple exceptional points in APT-symmetric cantor multilayers. Crystals 13, 197 (2023). https://doi.org/10.3390/cryst13020197.
  • [6] Shalaev, V. M. Optical negative-index metamaterials. Nat. Photonics 1, 41-48 (2007). https://doi.org/10.1038/nphoton.2006.49.
  • [7] Wong, Z. J. Parity-Time Symmetric Laser and Absorber. in Progress in Electromagnetics Research Symposium (PIERS) 1650-1654 (IEEE, 2018). https://doi.org/10.23919/PIERS.2018.8597972.
  • [8] Brac de la Perrière, V., Gaimard, Q., Benisty, H., Ramdane, A. & Lupu, A. Electrically injected parity-time symmetric distributed feedback laser diodes (DFB) for telecom applications. Nanophotonics 10, 1309-1317 (2021). https://doi.org/10.1515/nanoph-2020-0587.
  • [9] Rüter, C. E. et al. Observation of parity-time symmetry in optics. Nat. Phys. 6, 192-195 (2010). https://doi.org/10.1038/nphys1515.
  • [10] Yang, F., Liu, Y.-C. & You, L. Anti-PT symmetry in dissipatively coupled optical systems. Phys. Rev. A 96, 053845 (2017). https://doi.org/10.1103/PhysRevA.96.053845.
  • [11] Li, W. et al. Real frequency splitting indirectly coupled anti-parity-time symmetric nanoparticle sensor. J. Appl. Phys. 128, 134503 (2020). https://doi.org/10.1063/5.0020944.
  • [12] Passaro, V. M. N. et al. Parity-Time and Anti-Parity-Time-Symmetry Integrated Optical Gyroscopes: A Perspective for High Performance Devices. in 22nd International Conference on Transparent Optical Networks (ICTON) 1-4 (IEEE, 2020). https://doi.org/10.1109/ICTON51198.2020.9203305.
  • [13] De Carlo, M. (INVITED) Exceptional points of parity-time- and anti-parity-time-symmetric devices for refractive index and absorption-based sensing. Results Opt. 2, 100052 (2021). https://doi.org/10.1016/j.rio.2020.100052.
  • [14] Xu, X.-W., Liao, J.-Q., Jing, H. & Kuang, L.-M. Anti-parity-time symmetry hidden in a damping linear resonator. Sci. China: Phys. Mech. Astron. 66, 100312 (2023). https://doi.org/10.1007/s11433-023-2187-7.
  • [15] Fan, H., Chen, J., Zhao, Z., Wen, J. & Huang, Y.-P. Antiparity-time symmetry in passive nanophotonics. ACS Photonics 7, 3035-3041 (2020). https://doi.org/10.1021/acsphotonics.0c01053.
  • [16] Zhang, F., Feng, Y., Chen, X., Ge, L. & Wan, W. Synthetic anti-PT symmetry in a single microcavity. Phys. Rev. Lett. 124, 053901 (2020). https://doi.org/10.1103/PhysRevLett.124.053901.
  • [17] Wei, Y. et al. Anti-parity-time symmetry enabled on-chip chiral polarizer. Photonics Res. 10, 76-83 (2022). https://doi.org/10.1364/PRJ.444075.
  • [18] Phang, S. Theory and numerical modelling of parity-time symmetric structures for photonics. (University of Nottingham, 2016). http://eprints.nottingham.ac.uk/32596/.
  • [19] Mossakowska-Wyszyńska, A., Witoński, P. & Szczepański, P. Nonlinear operation of an FP laser with PT symmetry active medium. Opt. Express 31, 8518-8534 (2023). https://doi.org/10.1364/OE.479222.
  • [20] Witoński, P., Mossakowska-Wyszyńska, A. & Szczepański, P. Gain properties of the single cell of a one-dimensional photonic crystal with PT symmetry. Crystals 13, 258 (2023). https://doi.org/10.3390/cryst13020258.
  • [21] Pettit, G. D. & Turner, W. J. Refractive index of InP. J. Appl. Phys. 36, 2081 (1965). https://doi.org/10.1063/1.1714410.
  • [22] Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972-975 (2014). https://doi.org/10.1126/science.1258479.
  • [23] Witoński, P., Mossakowska-Wyszyńska, A. & Szczepański, P. Effect of nonlinear loss and gain in multilayer PT-symmetric Bragg grating. IEEE J. Quantum Electron. 53, 1-11 (2017). https://doi.org/10.1109/JQE.2017.2761380.
  • [24] Shramkova, O. V. & Tsironis, G. P. Resonant combinatorial frequency generation induced by a PT-symmetric periodic layered stack. IEEE J. Sel. Top. Quantum Electron. 22, 5000307 (2016). https://doi.org/10.1109/JSTQE.2015.2505139.
  • [25] Veselago, V., Braginsky, L., Shklover, V. & Hafner, C. Negative refractive index materials. J. Comput. Theor. Nanosci. 3, 189-218 (2006). https://doi.org/10.1166/jctn.2006.3000.
  • [26] Optical Switching in Low-Dimensional Systems. (eds. Haug, H. & Banyai, L.) (Springer USA, 1989). https://doi.org/10.1007/978-1-4684-7278-3.
Uwagi
1. The authors wish to thank Ms. Urszula Wyszyńska for checking the linguistic correctness of the manuscript.
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d69af0ed-d099-48f3-b2c6-e4aaf05f93f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.