PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary analysis of thermal response of dielectric and conducting composite structures durnig lightning strike

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wstępna analiza odpowiedzi cieplnej dielektrycznych i przewodzących struktur kompozytowych podczas uderzenia pioruna
Języki publikacji
EN
Abstrakty
EN
The phenomenon of a lightning strike occurring during aircraft operation may seriously affect the integrity of its components due to the electrically insulating properties of polymers and polymeric composites used for manufacturing the fuselage elements of an aircraft. Due to the very high magnitude of temperature fields appearing during lightning strikes, decomposition and vaporization of the matrix and reinforcement materials occur. This results in a pyrolysis reaction and leads to rapid degradation of polymeric composites. One of the ways to limit such degradation is to make the matrix electrically conducting. Such a material is currently being developed by the authors’ team. In order to perform preliminary evaluation of the ability of the new material to minimize temperature magnitude and degradation during a lightning strike, a comparative study with a carbon fiber-reinforced polymeric composite, typical for aircraft applications, was performed. The comparative analysis was performed based on the coupled thermal-electrical analytical model of the considered composites subjected to a lightning strike. The obtained results show that the developed material, due to its electrical conductivity, receives much less thermal energy during a lightning strike and thus, minimizes degradation processes.
PL
Zjawisko uderzenia pioruna występujące podczas eksploatacji statków powietrznych może istotnie wpływać na integralność ich elementów ze względu na właściwości elektrycznej izolacji polimerów i kompozytów polimerowych stosowanych przy wytwarzaniu elementów kadłubów samolotów. Ze względu na bardzo wysokie wartości pól temperatury powstających podczas uderzeń piorunów zachodzi dekompozycja i odparowywanie materiałów osnowy i wzmocnienia. Powoduje to reakcję pirolizy i prowadzi do szybkiej degradacji kompozytów polimerowych. Jednym ze sposobów ograniczenia takiej degradacji jest wykorzystanie osnowy polimerowej zdolnej do przewodzenia prądu. Taki materiał jest obecnie opracowywany przez zespół autorów. W celu dokonania wstępnej oceny zdolności nowego materiału do minimalizacji wartości temperatury i degradacji podczas uderzenia pioruna przeprowadzono badania porównawcze z kompozytem polimerowym umacnianym włóknem węglowym, typowym w zastosowaniach lotniczych. Analiza porównawcza została przeprowadzona w oparciu o sprzężony termoelektryczny model analityczny rozpatrywanych kompozytów poddanych uderzeniu pioruna. Uzyskane wyniki wskazują, że opracowywany materiał, ze względu na swoją przewodność elektryczną, otrzymuje znacznie mniej energii cieplnej podczas uderzenia pioruna, a tym samym minimalizuje procesy degradacji.
Rocznik
Strony
8--14
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Institute of Fundamentals of Machinery Design,ul. Konarskiego 18A, 44-100 Gliwice, Poland
  • Silesian University of Technology, Department of Physical Chemistry and Technology of Polymers, ul. Strzody 9, 44-100 Gliwice, Poland
Bibliografia
  • [1] Abdeal G., Murphy A., Nonlinear numerical modelling of lightning strike effect on composite panels with temperature dependent material properties, Composite Structures 2014, 109, 268-278.
  • [2] Metwally I.A., A-Rahim A.A., Heidler F., Zischank W., Computation of transient-temperature profiles in objects exposed to simulated lightning currents, International Journal of Thermal Sciences 2006, 45, 691-696.
  • [3] Sweers G., Birch B., Gokcen J., Lightning strikes: protection, inspection, and repair, Aero Magazine 2012, 4, 19-28.
  • [4] Feraboli P., Miller M., Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike, Composites: Part A 2009, 40, 954-967.
  • [5] Hirano Y., Katsumata S., Iwahori Y., Todoroki A., Artificial lightning testing on graphite/epoxy composite laminate, Composites: Part A 2010, 41, 1461-1470.
  • [6] Kawakami H., Feraboli P., Lightning strike damage resistance and tolerance of scarf-repaired mesh-protected carbon fiber composites, Composites: Part A 2011, 42, 1247-1262.
  • [7] Gagné M., Therriault D., Lightning strike protection of composites, Progress in Aerospace Sciences 2014, 64, 1-16.
  • [8] Gou J., Tang Y., Liang F., Zhao Z., Firsich D., Fielding J., Carbon nanofiber paper for lightning strike protection of composite materials, Composites: Part B 2010, 41, 192-198.
  • [9] Han J., Zhang H., Chen M., Wang D., Liu Q., Wu Q., Zhang Z., The combination of carbon nanotube buckypaper and insulating adhesive for lightning strike protection of the carbon fiber/epoxy laminates, Carbon 2015, 94, 101-113.
  • [10] Chakravarthi D.K., Khabashesku V.N., Vaidyanathan R., Blaine J., Yarlagadda S., Roseman D., Zeng Q., Barrera E.V., Carbon fiber-bismaleimide composites filled with nickel-coated single-walled carbon nanotubes for lightningstrike protection, Advanced Functional Materials 2011, 21, 2527-2533.
  • [11] Katunin A., Krukiewicz K., Electrical percolation in composites of conducting polymers and dielectrics, Journal of Polymer Engineering 2015, 35, 731-741.
  • [12] Catalanotti G., Katunin A., Modelling the electro-mechanical properties of PPy/epoxy conductive composites, Computational Materials Science 2016, 113, 88-97.
  • [13] Krukiewicz K., Katunin A., The effect of reaction medium on the conductivity and morphology of polyaniline doped with camphorsulfonic acid, Synthetic Metals 2016 (in press).
  • [14] Ogasawara T., Hirano Y., Yoshimura A., Coupled thermalelectrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current, Composites: Part A 2010, 41, 973-981.
  • [15] Zou T., Wang J., Mao K., Feng Z., Simulation of lightning protection for composite civil aircrafts, Procedia Engineering 2011, 17, 328-334.
  • [16] Chemartin L., Lalande P., Peyrou B., Chazottes A., Elias P.Q., Delalondre C., Cheron B.G., Lago F., Direct effects of lightning on aircraft structure: analysis of the thermal, electrical and mechanical constraints, Journal of Aerospace Lab 2012, 5, 1-15.
  • [17] Ranjith R., Myong R.S., Lee S., Computational investigation of lightning strike effects on aircraft components, International Journal of Aeronautical & Space Sciences 2014, 15, 44-53.
  • [18] Wang F.S., Ding N., Liu Z.Q., Ji Y.Y., Yue Z.F., Ablation damage characteristic and residual strength prediction of carbon fiber/epoxy composite suffered from lightning strike, Composite Structures 2014, 117, 222-233.
  • [19] Dong Q., Guo Y., Sun X., Jia Y., Coupled electricalthermal-pyrolytic analysis of carbon fiber/epoxy composites subjected to lightning strike, Polymer 2015, 56, 385-394.
  • [20] Zhupanska O.I., Sierakowski R.L., Electro-thermo-mechanical coupling in carbon fiber polymer matrix composites, Acta Mechanica 2011, 218, 319-332.
  • [21] Lago F., Gonzalez J.J., Freton P., Gleizes A., A numerical modelling of an electric arc and its interaction with the anode: Part I. The two-dimensional model, Journal of Physics D: Applied Physics 2004, 37, 883-897.
  • [22] Gonzalez J.J., Lago F., Freton P., Masquère M., Franceries X., A numerical modelling of an electric arc and its interaction with the anode: Part II. The three-dimensional model - influence of external forces on the arc column, Journal of Physics D: Applied Physics 2005, 38, 306-318.
  • [23] Lago F., Gonzalez J.J., Freton P., Uhlig F., Lucius N., Piau G.P., A numerical modelling of an electric arc and its interaction with the anode: Part III. Application to the interaction of a lightning strike and an aircraft in flight, Journal of Physics D: Applied Physics 2006, 39, 2294-2310.
  • [24] Chemartin L., Lalande P., Delalondre C., Cheron B., Lago F., Modelling and simulation of unsteady dc electric arcs and their interactions with electrodes, Journal of Physics D: Applied Physics 2011, 44, 194003.
  • [25] Wang Y., Zhupanska O.I., Evaluation of the thermal damage in glass fiber polymer-matrix composites in wind turbine blades subjected to lightning strike, Proceedings of American Society for Composites, 29th Annual Technical Conference, San Diego, CA 2014.
  • [26] Kaddani A., Delalondre C., Simonin O., Minoo H., Thermal and electrical coupling of arc electrodes, Journal of High Temperature Chemical Processes 1994, 3, 441-448.
  • [27] Electromagnetic environmental effects requirements for systems, MIL-STD-464, Department of Defense 1997.
  • [28] Aircraft lightning environment and related test waveforms, Aerospace Recommended Practice, ARP 5412, SAE, 1999.
  • [29] High-voltage test techniques - Part 1: General definitions and test requirements, IEC 60060-1, 2010.
  • [30] Baginskii S.I., Theory of the development of a spark channel, Journal of Experimental and Theoretical Physics (USSR) 1958, 34, 1548-1557.
  • [31] Ploster M.N., Numerical model of the return stroke of the lightning discharge, Physics of Fluids 1971, 14, 2124.
  • [32] Perera C., Rahman M., Fernando M., Liyanage P., Cooray V., The relationship between current and channel diameter of 30 cm long laboratory sparks, Journal of Electrostatics 2012, 70, 512-516.
  • [33] De Tammerman G., Daniels J., Bystrov K., van den Berg M.A., Zielinski J.J., Melt-layer motion and droplet ejection under divertor-relevant plasma conditions, Nuclear Fusion 2013, 53, 023008.
  • [34] Battaglia J.-L., Saboul M., Pailhes J., Saci A., Kusiak A., Fudym O., Carbon epoxy composites thermal conductivity at 77 K and 300 K, Journal of Applied Physics 2014, 115, 223516.
  • [35] Agrawal A., Satapathy A., Development of a heat conduction model and investigation on thermal conductivity enhancement of A1N/epoxy composites, Procedia Engineering 2013, 51, 573-578.
  • [36] Yan H., Sada N., Toshima N., Thermal transporting properties of electrically conductive polyaniline films as organic thermoelectric materials, Journal of Thermal Analysis and Calorimetry 2002, 69, 881-887.
  • [37] Gupta G., Birbilis N., Khanna A.S., An epoxy based lignosulphonate doped polyaniline-poly(acrylamide co-acrylic acid) coating for corrosion protection of aluminium alloy 2024-T3, International Journal of Electrochemical Science 2013, 8, 3132-3149.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d69a9c18-13be-4ef2-9c90-eb28ac05c3db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.