PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of solidification behaviour and mechanical properties of arc stud welded AISI 316L stainless steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper aims to investigate the impact of arc stud welding (ASW) process parameters on the microstructure and mechanical properties of AISI 316L stainless steel stud/plate joint. Design/methodology/approach: The weld performed using ASW machine. The influence of welding current and time on solidification mode and microstructure of the fusion zone (FZ) was investigated using optical microscope and scanning electron microscope (SEM). Microhardness and torque strength tests were utilised to evaluate the mechanical properties of the welding joint. Findings: The results showed that different solidification modes and microstructure were developed in the FZ. At 400 and 600 A welding currents with 0.2 s welding time, FZ microstructure characterised with single phase austenite or austenite as a primary phase. While with 800 A and 0.2 s, the microstructure consisted of ferrite as a primary phase. Highest hardness and maximum torque strength were recorded with 800 A. Solidification cracking was detected in the FZ at fully austenitic microstructure region. Research limitations/implications: The main challenge in this work was how to avoid the arc blow phenomenon, which is necessary to generate above 300 A. The formation of arc blow can affect negatively on mechanical and metallurgical properties of the weld. Practical implications: ASW of austenitic stainless steel are used in multiple industrial sectors such as heat exchangers, boilers, furnace, exhaust of nuclear power plant. Thus, controlling of solidification modes plays an important role in enhancing weld properties. Originality/value: Study the influence of welding current and time of ASW process on solidification modes, microstructure and mechanical properties of AISI 316 austenitic stainless steel stud/plate joint.
Rocznik
Strony
5--14
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Ministry of Oil, Midland Oil Company, Iraq
autor
  • Department of Materials Engineering, Faculty of Engineering, University of Kufa, Najaf, Iraq
autor
  • Babylon Technical Institute, Al-Furat Al-Awsat Technical University, Babylon, Iraq
autor
  • Department of Materials Engineering, College of Engineering, University of Diyala, Diyala, Iraq
Bibliografia
  • [1] A.B. Bayiit, A. Kurt, Investigation of the weld properties of dissimilar S32205 duplex stainless steel with AISI 304 steel joints produced by arc stud welding, Metals 7/3(2017) 77, DOI: https://doi.org/10.3390/met7030077.
  • [2] N.F. Yilmaz, A.A. Hamza, Effect of Process Parameters on mechanical and microstructural properties of arc stud welds, Materials Testing 56/10 (2014) 806811, DOI: https://doi.org/10.3139/120.110629.
  • [3] M. Alali, I. Todd, B. Wynne, Through-thickness microstructure and mechanical properties of electron beam welded 20 mm thick AISI 316L austenitic stainless steel, Materials & Design 130 (2017) 488500, DOI: https://doi.org/10.1016/j.matdes.2017.05.080.
  • [4] A. Balitsky, I. Kostyuk, O. Krokhmalny, Psysicalmechanical non-homogeneity of welded joints of high-nitrogen Cr-Mn steels and their corrosion resistance, Paton Welding Journal C/C of Avtomaticheskaia Svarka 2003/2 (2003) 26-29.
  • [5] H. Soltanzadeh, J. Hildebrand, M. Kraus, M. Asadi, Modelling of a stud arc welding joint for temperature field, Microstructure Evolution and residual stress, Proceedings of the Pressure Vessels and Piping Conference "ASME 2016", American Society of Mechanical Engineers, 2016, V06BT06A002.
  • [6] H.A. Chambers, Principles and practices of stud welding, PCI Journal 46/5 (2001) 46-58, DOI: https://doi.org/10.15554/pcij.09012001.46.58.
  • [7] E.N. Abbas, S. Omran, M. Alali, M.H. Abass, A.N. Abood, Dissimilar Welding of AISI 309 Stainless Steel to AISI 1020 Carbon Steel Using Arc Stud Welding, Proceedings of the 2018 International Conference on Advanced Science and Engineering "ICOASE", 2018, 462-467.
  • [8] R. Unnikrishnan, K.S.N. Satish Idury, T.P. Ismail, A. Bhadauria, S.K. Shekhawat, R.K. Khatirkar, S.G. Sapate, Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments, Materials Characterization 93 (2014) 10-23, DOI: https://doi.org/10.1016/j.matchar.2014.03.013.
  • [9] N. Moslemi, N .Redzuan, N. Ahmad, T.N. Hor, Effect of current on characteristic for 316 stainless steel welded joint including microstructure and mechanical properties," Procedia CIRP 26 (2015) 560-564, DOI: https://doi.org/10.1016/j.procir.2015.01.010.
  • [10] J. Yan, M. Gao, X. Zeng, Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding, Optics and Lasers in Engineering 48/4 (2010) 512-517, DOI: https://doi.org/10.1016/j.optlaseng.2009.08.009.
  • [11] T. Tabish, T. Abbas, M. Farhan, S. Atiq, T. Butt, Effect of heat input on microstructure and mechanical properties of the TIG welded joints of AISI 304 stainless steel, International Journal of Scientific & Engineering Research 5/7 (2014) 1532-1541.
  • [12] E. Zumelzu, J. Sepulveda, M. Ibarra, Influence of microstructure on the mechanical behaviour of welded 316 L SS joints, Journal of Materials Processing Technology 94/1 (1999) 36-40, DOI: https://doi.org/10.1016/S0924-0136(98)00450-6.
  • [13] S. Tjong, S. Zhu, N. Ho, J. Ku, Microstructural characteristics and creep rupture behavior of electron beam and laser welded AISI 316L stainless steel, Journal of Nuclear Materials 227/1-2 (1995) 24-31, DOI: https://doi.org/10.1016/0022-3115(95)00142-5.
  • [14] B. Joseph, D. Katherasan, P. Sathiya, C.S. Murthy, Weld metal characterization of 316L (N) austenitic stainless steel by electron beam welding process, International Journal of Engineering, Science and Technology 4/2 (2012) 169-176.
  • [15] J. Lippold, Centerline cracking in deep penetration electron beam welds in Type 304L stainless steel, Welding Journal 64/5 (1985) 127s-136s.
  • [16] A.A. Shehab, S.K. Sadrnezhaad, M.J. Torkamany, M. Fakouri Hasanabadi, M. Alali, A.K. Mahmoud, M.H. Abass, A.H. Kokabi, Ring-like laser spot welding of Ti grade2 to AAl3105-O using AlSiMg filler metal, Optik (2019) 163630, DOI: https://doi.org/10.1016/j.ijleo.2019.163630.
  • [17] O. Balyts’kyi, I. Kostyuk, Strength of welded joints of Cr–Mn steels with elevated content of nitrogen in hydrogen-containing media, Materials Science 45/1 (2009) 97-107, DOI: https://doi.org/10.1007/s11003009-9166-7.
  • [18] H.M. Mahan, Effect of Heat Treatments on the Mechanical Properties of Welded Joints of Alloy Steel by Arc Welding, Diyala Journal of Engineering Sciences 12/2 (2019) 44-53, DOI: https://doi.org/10.26367/DJES/VOL.12/NO.2/4.
  • [19] J. Kell, J. Tyrer, R. Higginson, R. Thomson, Microstructural characterization of autogenous laser welds on 316L stainless steel using EBSD and EDS, Journal of Microscopy 217/2 (2005) 167-173, DOI: https://doi.org/10.1111/j.1365-2818.2005.01447.x.
  • [20] T. Siewert, C. McCowan, D. Olson, Ferrite number prediction to 100 FN in stainless steel weld metal, Welding Journal 67/12 (1988) 289s-298s.
  • [21] A. Choubey, V. Jatti, Influence of heat input on mechanical properties and microstructure of austenitic 202 grade stainless steel weldments, WSEAS Transactions on Applied and Theoretical Mechanics 9 (2014) 222-228.
  • [22] S. Semiatin, G. Lahoti, J. Jonas, ASM metals handbook, ASM, Metals Park, OH, 1985.
  • [23] D. Kotecki, J. Lippold, Welding metallurgy and weldability of stainless steels, Wiley ,Hoboken, NJ, 2005; B. Barbero, E. Ureta Comparative study of different digitization techniques and their accuracy, Computer-Aided Design 43/1 (2011) 188-206, DOI: https://doi.org/10.1016/j.cad.2010.11.005.
  • [24] S. Celen, S. Karadeniz, H. Özden, Effect of laser welding parameters on fusion zone morphological, mechanical and microstructural characteristics of AISI 304 stainless steel, Materialwissenschaft und Werkstofftechnik 39/11 (2008) 845-850, DOI: https://doi.org/10.1002/mawe.200800384.
  • [25] M. Perricone, J. Dupont, T. Anderson, C. Robino, J. Michael, An investigation of the massive transformation from ferrite to austenite in laserwelded mo-bearing stainless steels, Metallurgical and Materials Transactions A 42/3 (2011) 700-716, DOI: https://doi.org/10.1007/s11661-010-0433-x.
  • [26] S. Baghjari, S. AkbariMousavi, Experimental investigation on dissimilar pulsed Nd: YAG laser welding of AISI 420 stainless steel to kovar alloy, Materials & Design 57 (2014) 128-134, DOI: https://doi.org/10.1016/j.matdes.2013.12.050.
  • [27] V. Shankar, T. Gill, S. Mannan, S. Sundaresan, Solidification cracking in austenitic stainless steel welds, Sadhana 28/3-4 (2003) 359-382, DOI: https://doi.org/10.1007/BF02706438.
  • [28] J. Yu, M. Rombouts, G. Maes, Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition, Materials & Design 45 (2013) 228-235, DOI: https://doi.org/10.1016/j.matdes.2012.08.078.
  • [29] J .Elmer, S. Allen, T. Eagar, Microstructural development during solidification of stainless steel alloys, Metallurgical Transactions A 20/10 (1989) 21172131, DOI: https://doi.org/10.1007/BF02650298.
  • [30] J. Sule, S. Ganguly, H. Coules, T. Pirling, Application of local mechanical tensioning and laser processing to refine microstructure and modify residual stress state of a multi-pass 304L austenitic steels welds, Journal of Manufacturing Processes 18 (2015) 141-150, DOI: https://doi.org/10.1016/j.jmapro.2015.03.003.
  • [31] D. Kotecki, T. Siewert, WRC-1992 constitution diagram for stainless steel weld metals: a modification of the WRC-1988 diagram, Welding Journal 71/5 (1992) 171s-178s.
  • [32] S. Kou, Welding metallurgy, John Wiley & Sons, 2003.
  • [33] D.R. Askeland, P. Webster, The science and engineering of materials, Springer, 1996.
  • [34] Š. Klarič, I. Kladarič, D. Kozak, A. Stoič, Ž. Ivandič, I. Samardžič, The influence of the stud arc welding process parameters on the weld penetration, Scientific Bulletin Series C: Fascicle Mechanics, Tribology, Machine Manufacturing Technology 23 (2009) 79-84.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d69811d5-cf4a-46e7-a16a-053f640a8d77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.