PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Moisture transmission through textiles. Part II: Evaluation methods and mathematical modelling

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The moisture transmission behaviour of a clothing assembly plays a very important role in influencing its efficiency with respect to thermophysiological body comfort. This paper is in two parts. Part I deals with the processes involved in moisture transmission and the factors at play. Part II is concerned with selecting the measurement techniques which are of great importance in determining fabric factors that influence comfort. The instruments and methods used for testing purposes should adequately simulate the exact conditions for which the fabric will be used, in order to determine the effectiveness of that fabric for a particular wearing situation and environmental condition. The testing methods used and the apparatus developed by different researchers for determining moisture transmission through textiles by different mechanisms are discussed in this paper. Moreover, this part of the paper deals with the mathematical models of liquid and vapour transport through textile materials developed by several scientists in order to understand the exact phenomena involved and to predict the factors affecting the transmission under a particular condition.
Rocznik
Strony
194--216
Opis fizyczny
Bibliogr. 92 poz.
Twórcy
autor
  • Department of Textile Technology, Indian Institute of Technology, Delhi, India
autor
  • Department of Textile Technology, Indian Institute of Technology, Delhi, India
  • Department of Textile Technology, Indian Institute of Technology, Delhi, India
autor
  • Department of Textile Engineering, University of Minho, Guimaraes, Portugal
autor
  • Department of Textile Engineering, University of Minho, Guimaraes, Portugal
Bibliografia
  • 1. Li, Y., “The science of clothing comfort”, Textile progress 1(2), 31(2001).
  • 2. Parsons, K. C., “Human thermal environments”, Taylor & Francis Publishers, United Kingdom, 1993.
  • 3. Zhang, P., Watanabe, Y., Kim, S. H., Tokura, H. and Gong, R. H., Thermoregulatory responses to different moisture-transfer rates of clothing materials during exercise, J. Text. Inst., 92 (1), 372-378 (2001).
  • 4. Das, B., Das, A., Kothari, V. K., Fanguiero, R. and Araújo, M., Moisture transmission through textiles: processes involved in moisture transmission and the factors at play, Autex Research Journal (accepted for publication).
  • 5. Wehner, J. A., Miller, B. and Rebenfeld, L., Dynamics of water vapour transmission through fabric barriers, Text. Res. J., 10 (1988).
  • 6. Sachdeva, R. C., “Fundamentals of engineering heat and mass transfer”, 2nd ed., India, 2005, Publisher New Age International (P) Ltd.
  • 7. McCullogh, E. A. , Kwon, M. and Shim, H. A., Comparison of standard methods for measuring water vapour permeability of fabrics, Meas. Sci. Technol., 14, 1402-1408(2003). 1.4.12
  • 8. Gretton, J. C., Brook, D. B., Dyson, H. M., and Harlock, S. C., A correlation between test methods used to measure moisture vapour transmission through fabrics, J.of Coated Fabrics, 25(4), 301-310 (1996).
  • 9. Pause, B., “Measuring the water vapour permeability of coated fabrics and laminates”, J. of Coated Fabrics, 25(4), 311-320 (1996).
  • 10. Congalton, D., Heat and moisture transport through textiles and clothing ensembles utilizing the “Hohenstein” skin model, J. of Coated Fabrics, 28(1), 183-196 (1999).
  • 11. Holmes, D. A., Performance characteristics of waterproof breathable fabrics, J. of Coated Fabrics, 29(4), 306-316 (2000).
  • 12. Bartels, V. T., Physiological comfort of sportswear, Textiles in Sport, Edited by Shishoo, R., The Textile Institute, Woodhead Publishing Limited, Cambridge, England, 2005, 177-203.
  • 13. Havenith, G., Holmer, I., Den Hartog, E. A. and Parsons, K. C., Clothing evaporative heat resistance - proposal for improved representation in standards and models, Ann. Occup. Hyg., 43 (5), 1999 (339-346).
  • 14. Havenith, G., Heat balance when wearing protective clothing. Ann. Occup. Hyg., 43(5), 1999(289-296).
  • 15. Hes, L., A new indirect method for fast evaluation of the surface moisture absorptivity of engineered garments, Internet, Conference on Engineered Textiles, UMIST, Manchester, UK, 1998.
  • 16. Li., Y. and Holcombe, B. V., A two-stage sorption model of the coupled diffusion f moisture and heat in wool fabrics, 62(4) 211-217 (1992).
  • 17. Fohr, J. P., Couton, D. and Treguier, G., Dynamic heat and water transfer through layered fabrics, Text. Res. J., 72 (1), 1-12 (2002).
  • 18. Gibson, P. W., Water vapour transport and gas flow properties of textiles, polymer membranes and fabric laminates, J. of Coated Fabrics, 28(4), 300-327 (1999).
  • 19. Gibson, P., Kendrick, C., Rivin, D. and Sicuranza, L., An automated water vapour diffusion test method for fabrics, laminates, and flims, J. of Coated Fabrics, 24(4), 322-345 (1995).
  • 20. Gibson P. and Charmchi, M., The use of volume-averaging techniques to predict temperature transients due to water vapour sorption in hygroscopic porous polymer materials, J. Apply Poly. Sci., 64, 493-505(1997).
  • 21. Berger, X., Sari, H., and Schneider, M., A new technique to measure the vapour flow resistance of textiles, J. Text. Inst., 361-377.
  • 22. Williams, J. T., A comparison of techniques used to assess the thermal burden of protective clothing, Performance of Protective Clothing: 6th Volume, ASTM STP 1273, Jeffrey O. Stull and Arthur D. Schwope, Eds., American Society for Testing and Materials, Philadelphia, 1997.
  • 23. Kissa, E., “Wetting and wicking”, Text. Res. J., 66 (10), 660-668 (1996).
  • 24. Patnaik, A., Ghosh, A., Rengasamy, R. S. and Kothari, V. K., Wetting and wicking in fibrous materials, Textile Progress, 38(1), Indian Institute of Technology, India, 2006.
  • 25. Grindstaff, T. H., Simple apparatus and technique for contact-angle measurements on small-denier single Fibres, Text. Res. J., 39 (10), 958-962 (1969).
  • 26. Wei, Q. F., Matheringham, R. R. and Yang, R.D., Dynamic wetting of fibres observed in an environmental scanning electron microscope, Text. Res. J., 73(6), 557-561 (2003).
  • 27. Sˇikalo, Sˇ., Marengo, M., Tropea, C. and Ganic ́, E.N., Analysis of droplet impact on horizontal surfaces, Exp. Thermal Fluid Sci., 25, 503–510 (2002).
  • 28. Grader, L., On the modeling of the dynamic contact angle, Coll. Poly. Sci., 264 (8), 719-726(1986).
  • 29. Sˇikalo, Sˇ., Marengo, M., Tropea, C. and Ganic ́, E.N., Dynamic wetting angle of a spreading droplet, Exp. Thermal Fluid Sci. 29, 795–802 (2005).
  • 30. Kamath, Y. K., Dansizer, C. J., Hornby, S. and Weigmann, H. D., Surface wettability scanning of long filaments by a liquid membrane method, Text. Res. J., 57(4), 205-213 (1987).
  • 31. Holmér, I., Moisture permeation of clothing and thermal comfort, in: B. Berglund, T. Tindvall, J. Sundell (Eds.), Buildings, Ventilation and Thermal Climate, Indoor Air, Vol. 5, Swedish Council for Building Research, Stockholm, 1984 (321–327).
  • 32. Havenith, G., Holme ́r, I., Parson, K., Personal factors in thermal comfort assessment: clothing properties and metabolic heat production, Energy and Buildings, 34, 581-591(2002).
  • 33. Scheurell, D.M., Spivak, S. and Hollies, N. R. S., “Dynamic surface wettness of fabric in relation to clothing comfort“, Text. Res. J., 6, 394-399 (1985).
  • 34. D ́Silva, A. P., Greenhood, C., Anand, S. C., Holmes, D. H. and Whatmough, N., Concurrent determination of absorption and wickability of fabrics: A new test method, J. Text. Inst., 91(3), 383-396 (2000).
  • 35. Hernett, P. R., and Mehta, P. N., A survey and comparison of labratory test methods for measuring wicking, Text. Res. J., 54, 471-478 (1984).
  • 36. Saville, B. P., Physical testing of textiles, Woodhead Publishing Limited, Cambridge, England, 2000.
  • 37. Yoo, S. and Barker, R. L., Comfort properties of heat-resistant protective work wear in varying conditions of physical activity and environment. Part I: Thermophysical and Sensorial Properties of Fabrics, Text. Res. J. 75(7), 523–530 (2005).
  • 38. Chattopadhyay, R. and Chauhan, A., Wicking behavior of compact and ring spun yarns and fabrics, in One Day Seminar on Comfort in Textiles, I I T Delhi, 2004, October 16, p. 20-30 (Delhi).
  • 39. Adams, K. L. and Rebenfeld, L., In-plane flow of fluids in Fabrics: Structure/flow characterization, Text. Res. J., 11, 647-654 (1987).
  • 40. Håkanson, J. M., Toll, S., Lundstro, T. S., Liquid permeability of an anisotropic fiber web, Text. Res. J. 75(4), 304–311 (2005).
  • 41. Miller, B. and Tyomkin, I., Spontaneous transplaner uptake of liquids by fabric, Text. Res. J., 11, 706-712(1984).
  • 42. Konopka, A. and Pourdeyhimi, B., In-plane liquid distribution of nonwoven fabrics: part i - experimental observations, INJ Winter, 2002(22-27).
  • 43. Sengupta, A. K. and Shreenivasa Murthy, H. V., “Wicking in ring spun vis-à-vis rotor spun yarns”, Text. Res. J., 10, 155-157 (1985).
  • 44. Nyoni, A.B. and Brook, D., Wicking mechanisms in yarns-the key to fabric wicking performance, Text. Res. J., 97(2), 119-128(2006).
  • 45. Perwuelz, A., Mondon, P. and Caze, C., Experimental study of capillary flow in yarn, Text. Res. J., 70(4), 333-339 (2000).
  • 46. Ansari, N. and Haghighat K., The wicking of water in yarn as measured by an electrical resistance technique, J. of Text. Inst., 91(3), 401-419 (2000).
  • 47. Hollies, N.R.S., Kaessinger, M. M., and Bogaty, H., Water transport mechanism in textile materials, Part II: Capillary type penetration in yarns and fabric, Text. Res. J., 27, 8-13 (1957).
  • 48. Kamath, Y. K., Hornby, S. B., Weigman, H. D. and Wilde, M. F., Wicking of spin finishes and related liquids into continuous filament yarns, Text. Res. J., 64(1), 33-40(1994).
  • 49. Hu, J., Li, Y., Yeung, Anthony, K. W., Wong, S. W. and Xu, W., Moisture management tester: A method to characterize fabric liquid moisture management properties, Textile Res. J. 75(1), 57–62 (2005).
  • 50. Ito, H. and Muraoka, Y., Water transport along textile fibres as measured by an electrical capacitance technique, Textile Res. J., 63(7),414-420 (1993).
  • 51. Tagaya, H., Haikata, J., Nakata, K. and Nishizawa, K., Measurement of capillary rise in fabrics by electric capacitance method, Sen-I Gakkaishi, 47, 422-430 (1987).
  • 52. Adler, M. M. and Walsh, W. K., Mechanism of transient moisture transport between fabrics, Text. Res. J., 5, 334-343 (1984).
  • 53. Katch, "Exercise Physiology-Energy, Nutrition and Human Performance," 4 ed.,Williams & Wilkins, 1996.
  • 54. Simile, C. B., Critical evaluation of wicking in performance fabrics, Master thesis, School of Polymer, Textile, and Fiber Engineering, Georgia Institute of Technology, Dec., 2004.
  • 55. Wang, L. P., Li, C., A new method for measuring dynamic fabric heat and moisture comfort, Exp. Ther. & Fluid sci., 29, 705-714(2005).
  • 56. Rugh, J. P., Farrington, R. B., Bharathan, D., Vlahinos, A., Burke, R., Predicting human thermal comfort in a transient non uniform thermal environment, Eur. J. Appl. Physiol., 92(6), Sep, 2004 (721-729).
  • 57. Nilsson, H. O. and Holmér, I., Thermal Manik in Testing 3IMM at the National Institute for Working Life, Proceedings of the Third International Meeting, October, 1999 (12–13).
  • 58. Kothari, V. K., “Quality control: Fabric comfort”, Indian Ins. of Tech., Delhi, India, 2000.
  • 59. International Standards for the Assessment of, Ann. occup. Hyg., 43(5), 1999 (297-308).
  • 60. Ren, Y. J. and Ruckman, J. E., Water vapour transfer in wet waterproof breathable fabrics, J. Indus. Text., 32(3/1), 165-175 (2003).
  • 61. Ruckman, J. E., Water resistance and water vapour transfer, Textiles in Sport, Edited by Shishoo, R., The Textile Institute, Woodhead Publishing Limited, Cambridge, England, 287-303 (2005).
  • 62. Motakef, S. and El-Maher, M.A., Simultaneous heat and mass transfer with phase change in a porous slab, Int. J. Heat Mass Transfer, 29 (10), 1503-1512 (1986).
  • 63. Wijeysundera, N. E., Hawlader, M. N. and Tan, Y. T., Water vapour diffusion and condensation in fibrous insulation, Int. J. Heat Mass Transfer, 32 (10), 1865-1878 (1989).
  • 64. Xiaohong, Z., Shanyuan, W. and Guanlu, Y., An apparatus used to investigate condensation for fabrics, laminates and films, J. of Indus. Text., 32(3), 1, 177-186 (2003).
  • 65. Keighley, J. H., Breathable fabrics and comfort in clothing, Journal of Coated Fabrics, 15(10), 89-104 (1985).
  • 66. Ruckman, J. E., Analysis of simultaneous heat and water vapour transfer through waterproof breathable fabrics, J. of Coated Fabrics, 26, 293-307 (1997).
  • 67. Fan, J. and Cheng, X. Y., Heat and moisture transfer with sorption and phase change through clothing assemblies, Part II: Theoritical modelling, simulation and comparison with experimental results, Int. J. Heat Mass Transfer, 75(3), 187-196 (2005).
  • 68. Murata, K., Heat and mass transfer with condensation in a fibrous insulation slab bounded on one side by a cold surface, Int. J. Heat Mass Transfer, 38(17), 3253-3262(1995).
  • 69. Fukazawa, T., Kawamura, Y., Tochihara, Y. and Tamura, T., Water vapour transport through textiles and condensation in clothes at high altitudes – combined influence of temperature and pressure simulating altitude, Text. Res. J., 73 (8), 657-663 (2003).
  • 70. Sari, H. and Berger, X., A new dynamic clothing model, Part 2: Parameters of the underclothing microclimate, Int. J. Ther. Sci., 39, 684-692(2000).
  • 71. Henry, P.S.H., Proc. R. Soc., 171A (1939).
  • 72. Nordon, P. and David, H. G., Coupled diffusion of moisture and heat in hygroscopic textile materials, Int. J. Heat Mass Transfer, 10, 853-865 (1967).
  • 73. Li, Y. and Holcombe, B. V., A two stage sorption model of the coupled diffusion of moisture and heat in wool fabrics, Text. Res. J., 62 (4), 211-217 (1992).
  • 74. Li, Y. and Zhu, Q., Simultaneous heat and moisture transfer with moisture sorption, condensation and capillary liquid diffusion in porous textiles, Text. Res. J., 73(6), 515-524 (2003).
  • 75. Woo, S. S., Shalev, I. and Barker, L., Heat and moisture transfer through nonwoven fabrics, Part II: Moisture diffusivity, Text. Res. J., 64 (3), 149-162 (1994).
  • 76. C.V. Le, N.G. Ly and R. Postle, “Heat and mass transfer in the condensing flow through an absorbing fibrous medium”, Int. J. Heat Mass Transfer, 38(1), 81-89(1995).
  • 77. Philips, W. G., and Charmchi M., Modelling convection/diffusion processes in porous textiles with inclusion of humidity-dependent air permeability, Int., Comm., Heat Mass Transfer, 24(5), 1997(709-724).
  • 78. Berger, X. and Sari, H., A new dynamic clothing model. Part 1: Heat and mass transfers, Int. J. Therm. Sci., 39, 673–683(2000).
  • 79. Fan, J., Luo, Z. & Wen, X., Modeling heat and moisture transfer through fibrous insulation with phase change and mobile condensates, Int. J.Heat Mass Transfer, 45, 4045–4055 (2002).
  • 80. Chatterjee, P. K., “Absorbency”, Elsevier Science Publishing Company, New Jersy, 1985.
  • 81. Mao, N. and Russell, S. J., Directional permeability in homogeneous nonwoven structures, Part I: The relationship between directional permeability and fibre orientation, J. Text. Inst., 91(1), 235-258 (2000).
  • 82. Reed, C. M. and Wilson, N., The fundamentals of absorbancy of fibres, textile structure and polymers, I: The rate rise of a liquid in glass capillaries, J. of Applied Phys., 26(9), 1993(1378-1381).
  • 83. Gali, K., Jones, B. and Tracy, J., Experimental techniques for measuring parameters describing wetting and wicking in fabrics, Text. Res. J., 64 (2), 106-111 (1994).
  • 84. Yarlagadda, A. P. and Yoganathan, A. P., A simplified model for fluid spreading in composite web structures, Text. Res. J., 1, 23-32 (1990).
  • 85. Gali, K., Jones, B. and Tracy, J., Modeling heat and mass transfer in fabrics, Int. J. Heat Mass Transfer, 8 (1), 13-21(1995).
  • 86. Lukas, D., Glazyrina, E. and Pan, N., Computer simulation of liquid wetting dynamics in fibre structures using the Ising model, J. Text. Inst., 88 (1), 149-161(1997).
  • 87. Wiener, J. and Dejlova, P., Wicking and wetting in textiles, Autex Res. J., 3 (2), 64-71 (2003).
  • 88. Ogniewicz, Y. and Tien, C. L., Analysis of condensation in porous insulation, J. Heat and Mass Transfer, 24, 1981 (421-429).
  • 89. A.P. Shapiro, S.Motakef, Unsteady heat and mass transfer with phase change in porous slab: analytical solutions and experimental results, J. Heat Mass Transfer 33 (1) 163–173 (1990).
  • 90. Bouddour, J. L. Auriault, M. Mhamdi-Alaoui and J. F. Bloch, Heat and mass transfer in wet porous media in presence of evaporation-condensation, Int. J. Heat Mass Transfer, 15(41), 2263-2277(1998).
  • 91. J. Fan, Z. Luo and Y. Li, Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation, Int. J. Heat Mass Transfer, 43, 2989-3000 (2000).
  • 92. J. Fan and X. Y. Cheng, Heat and moisture transfer with sorption and phase change through clothing assemblies, Part II: Theoretical modelling, simulation and comparison with experimental results, Text. Res. J., 75(3), 187-196 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6941920-55e7-49ce-b9b1-b59d6de98e7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.