PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental research of energy absorbing structures within helmet samples made with the additive manufacturing method – preliminary study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to develop an energy-absorbing structure for bicycle helmets to minimize head injuries caused by collisions. The research team explored three geometric structures produced through additive methods and compares their energy absorption properties with a standard bicycle helmet made of Expanded Polystyrene (EPS) foam. Methods: The study prepared samples of three geometric structures (a ball, a honeycomb and a conical shape) and a fragment of a bicycle helmet made of EPS foam with the same overall dimensions. Laboratory tests were conducted using a pneumatic hammer, piston compressor, anvil, triaxial accelerometer and data processing systems. Three crash tests were performed for each type of structure, and the anvil's maximum acceleration and stopping distance after the crash were analyzed. Results: The study found that the energy absorption properties of the Polylactic Acid (PLA) material printed with the incremental method were comparable or better than those of the EPS material used in helmets. The geometric structure of the energy-absorbing material played a crucial role in its effectiveness. The most promising results were obtained for the ball samples. Conclusions: The study concluded that further research on energy-absorbing structures made using the Fused Deposition Modeling (FDM) method could be useful in the production of bicycle helmets. The results show that the geometric structure of the energy-absorbing material is a crucial factor in its effectiveness. The findings suggest that the ballshaped structure made with PLA material printed using the incremental method could be a promising design for bicycle helmets to minimize head injuries caused by collisions.
Rocznik
Strony
127--136
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Warsaw, Poland.
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Warsaw, Poland.
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Warsaw, Poland.
autor
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Warsaw, Poland.
Bibliografia
  • [1] AARTS L.T, COMMANDEUR J.J.F., WELSH R. et al., Study on Serious Road Traffic Injuries in the EU, Brussels, 2016, DOI: 10.2832/29647.
  • [2] BIELAWSKI R., KOWALIK M., SUPRYNOWICZ K. et al., Investigation of Riveted Joints of Fiberglass Composite Materials, Mechanics of Composite Materials, 2016, DOI: 10.1007/ s11029-016-9573-4.
  • [3] BÍL M., DOBIÁŠ M., ANDRÁŠIK R. et al., Cycling fatalities: When a helmet is useless and when it might save your life, Safety Science, 2018, 105, 71–76.
  • [4] BORNSTEIN H., ACKLAND K., Evaluation of energy absorbing materials under blast loading, WIT Transactions on Engineering Sciences, 2013, 125–136.
  • [5] CONDREA O.A., CHIRU A., TOGĂNEL G.R., TRUSCA D.D., The Influence of Vehicle Low Impact Velocity over the Helmet Airbag Deployment and Cyclist Injuries, The 30th SIAR International Congress of Automotive and Transport Engineering, Springer International Publishing, Cham 2020, 273–280.
  • [6] DHINAKARAN V., GOKHULABALAN B., RAHUL KUMAR A., RAVICHANDRAN M., Advancement in materials for industrial safety helmets, Materials Today: Proceedings, 2020, 27, 777–782.
  • [7] FERNANDES F., ALVES DE SOUSA R., PTAK M., MIGUEIS G., Helmet Design Based on the Optimization of Biocomposite Energy-Absorbing Liners under Multi-Impact Loading, Applied Sciences, 2019, 9 (4), 735.
  • [8] GAO J.D., ZENG B.Q., PENG W., Cyclist injury in collision between car and electric bicycle, Jilin Daxue Xuebao (Gongxueban), Journal of Jilin University (Engineering and Technology Edition), 2016, DOI: 10.13229/j.cnki.jdxbgxb201606005.
  • [9] HAQ A.U., REDDY N.S.K., A brief review on various high energy absorbing materials, Materials Today: Proceedings, 2021, 38, 3198–3204.
  • [10] INGROLE A., AGUIRRE T.G., FULLER L., DONAHUE S.W., Bioinspired energy absorbing material designs using additive manufacturing, Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104518.
  • [11] JASTRZĘBSKI D., PERZ R., Rib kinematics analysis in oblique and lateral impact tests, Acta of Bioengineering and Biomechanics, 2020, DOI: 10.5277/ABB-01431-2019-03.
  • [12] KACZYŃSKI P., PTAK M., FERNANDES A.O.F., Development and Testing of Advanced Cork Composite Sandwiches for Energy-Absorbing Structures, Materials, 2019, 12 (5), 697.
  • [13] KIM Y.K., CHALIVENDRA V.B., LEWIS A.F., FASEL B., Designing flocked energy-absorbing material layers into sport and military helmet pads, Textile Research Journal, 2021, 004051752110106.
  • [14] KOSUCKI A., STAWIŃSKI Ł., MALENTA P., Energy consumption and energy efficiency improvement of overhead crane’s mechanisms, Eksploatacja i Niezawodność – Maintenance and Reliability, 2020, 22 (2), 323–330.
  • [15] LI G., MENG H., LIU J. et al., A novel modeling approach for finite element human body models with high computational efficiency and stability: Application in pedestrian safety analysis, Acta Bioeng. Biomech., 2021, DOI: 10.37190/ABB-01792- 2021-03.
  • [16] LI G., TAN Z., LV X., REN L., Numerical reconstruction of injuries in a real world minivan-to-pedestrian collision, Acta Bioeng. Biomech., 2019, DOI: 10.5277/ABB-01342-2019-02.
  • [17] LU G., YU T., Energy absorption of structures and materials, Woodhead Publishing Limited, 2003, DOI: 10.1533/ 9781855738584.
  • [18] MIELOSZYK J., TARNOWSKI A., KOWALIK M., Preliminary design of 3D printed fittings for UAV, Aircraft Engineering and Aerospace Technology, 2019, 91 (5), 756–760.
  • [19] MIZUNO K., YAMADA H., MIZUGUCHI H., The influence of lower extremity postures on kinematics and injuries of cyclists in vehicle side collisions, Traffic Injury Prevention, 2016, DOI: 10.1080/15389588.2015.1126671.
  • [20] OCHELSKI S., GOTOWICKI P., Wpływ kształtu elementu energochłonnego na zdolność pochłaniania energii, Biuletyn WAT, 2008.
  • [21] PAN D., HAN Y., HE W., HUANG H., Effect of vehicle steering maneuvers on kinematics and head injury risks of cyclists via finite element modeling analysis, International Journal of Crashworthiness, 2021, 26 (6), 608–616.
  • [22] PAPIS M., JASTRZĘBSKI D., KOPYT A., Driver reliability and behavior study based on a car simulator station tests in ACC system scenarios, Eksploatacja i Niezawodność, 2019, DOI: 10.17531/ein.2019.3.18.
  • [23] PAPIS M., MATYJEWSKI M., Assessment of the influence of the advanced emergency braking systems on pedestrian safety, The Archives of Automotive Engineering – Archiwum Motoryzacji, 2017, 77 (3), 97–109.
  • [24] PERZ R., MATYJEWSKI M., Risk of Experiment Failure – Analysis of Crash Test Reliability / Ryzyko Niepowodzenia Eksperymentu – Analiza Niezawodności Prób Zderzeniowych, Journal of KONBiN, 2014, 29 (1), 41–48.
  • [25] TENG T.-L., LIANG C.-C., NGUYEN V.-H., Assessment of a bicycle helmet liner with semispherical cones. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 230 (1), 344–352.
  • [26] World Health Organization. Cyclist Safety: An Information Resource for Decision-Makers and Practitioners. Geneva, World Health Organization, 2020.
  • [27] EN 1078+A1:2013-04 Standard. Helmets for pedal cyclists and for users of skateboards and roller skates.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d693acdb-fdd6-4567-a537-5ab133a58fc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.